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ABSTRACT

FPGA-Accelerated Digital Signal Processing
for UAV Traffic Control Radar

Kacen Paul Moody
Department of Electrical and Computer Engineering, BYU

Master of Science

As an extension of previous work done by Luke Newmeyer in his master’s thesis [1], this
report presents an improved signal processing chain for efficient, real-time processing of radar data
for small-scale UAV traffic control systems.

The HDL design described is for a 16-channel, 2-dimensional phased array feed processing
chain and includes mean subtraction, windowing, FIR filtering, decimation, spectral estimation via
FFT, cross-correlation, and averaging, as well as a significant amount of control and configuration
logic. The design runs near the the max allowable memory bus frequency at 300MHz, and using
AXI DMA engines can achieve throughput of 38.3 Gb/s (≈ 0.25% below theoretical 38.4 Gb/s),
transferring 2MB of correlation data in about 440µs. This allows for a pulse repetition frequency
of nearly 2kHz, in contrast to 454Hz from the previous design.

The design targets the Avnet UltraZed-EV MPSoC board, which boots custom PetaLinux
images. API code and post-processing algorithms run in this environment to interface with the
FPGA control registers and further process frames of data. Primary configuration options include
variable sample rate, window coefficients, FIR filter coefficients, chirp length, pulse repetition
interval, decimation factor, number of averaged frames, error monitoring, three DMA sampling
points, and DMA ring buffer transfers.

The result is a dynamic, high-speed, small-scale design which can process 16 parallel chan-
nels of data in real time for 3-dimensional detection of local UAV traffic at a range of 1000 m.

Keywords: local air traffic information systems, efficient computing, FPGA, digital signal pro-
cessing, hardware acceleration, Xilinx MPSoC, unmanned air vehicles, heterogeneous computing,
phased array radar
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CHAPTER 1. INTRODUCTION

Unmanned aerial vehicles (UAVs) have been a growing topic of research in recent years

because of the unique benefits they provide over larger manned aircraft [2], such as lower cost

and power, and increased safety for operators. A growing challenge, however, is that as more

small UAV devices enter into operation, air traffic control systems must detect a larger number of

targets and effectively prevent collisions. To approach this problem, companies like Echodyne have

developed small-scale metamaterial radar systems for autonomous devices [3], and researchers

have explored radar for high-density air traffic control where malicious UAV devices need to be

detected and avoided (DAA) [4].1 Non-radar based systems have also been explored using passive

machine vision to manage UAV air traffic [7].

In all of these systems one of the more difficult questions is where and how the signal

processing is to be done. To be effective, traffic management must be performed in real time and

produce sufficient range resolution and SNR to be accurate and consistent. These latter factors

require relatively large data packets [8], necessitating efficient, high-speed computation. For large

aircraft with stationary ground control systems, the size of the computation unit can often be fairly

large, making use of multiple integrated GPUs and CPUs, but this is becoming increasingly in-

feasible for small UAVs in remote locations where size and power consumption quickly become

expensive and unrealistic. With these unique limitations, research in FPGA DSP chains has grown

dramatically as a computation alternative to large-scale processing, offering a smaller form factor

with lower power consumption than their CPU and GPU counterparts [9] [10].

Over the past 35 years or so, FPGA technology has grown in capacity and speed according

to Moore’s law, while cost and power usage have declined [11]. This progress has led to FPGAs’

introduction into a variety of markets where high IO count, high throughput, and configurable

control logic are needed. In spite of the fact that configurable systems like FPGAs, which typically

1DAA algorithms—also known as Sense and Avoid (SAA) algorithms—have been a growing field of research as
UAV traffic safety has become essential to UAV systems [5], [6].

1
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run in the 100-500MHz range, fall far short of the clock speeds of modern CPUs and GPUs, they

can often make up for that shortcoming through parallel operations, which can quickly scale to

exceed the amount of processing power that a serial-instruction device can accomplish. This is

then further compounded by the higher IO count available in FPGAs which improves off-chip data

throughput.

Another key benefit of FPGA fabric is its configurability, which provides an advantage over

GPU processing as atypical computation configurations and sizes can be customized to perform

efficiently in the fabric. Additionally, because the designer can engineer a limitless variety of

digital circuits according to their needs, they can dedicate logic to custom processes which occur

at impressively predictable time intervals (in contrast to software threads scheduled on a CPU or

GPU). This regularity is essential in applications such as Doppler processing of radar data which

depends on a regular pulse repetition interval (PRI) to produce a spectral estimate with low phase

noise [8].

Thus, DSP processing applications using FPGA fabric have become more commonplace

as processing needs have grown. Examples of this include automotive driver assistance systems

[12], human sensing [13], and UAV radar detection [14]. With these new computation-heavy

applications arising, many FPGAs are now manufactured with dedicated DSP resources which

offer low latency computation at a higher potential maximum frequency to improve computational

performance, such as the those produced by Xilinx [15]. Newer FPGAs also have larger fabric

memories to improve buffering and interim storage during processing. Furthermore, taking the

isolated FPGA fabric further, many recent chips have been design as SoC or MPSoC heterogeneous

devices which couple multi-processor units with FPGA fabric on the same die, such as the Zynq

UltraScale+ MPSoC [16]. Thus, utilizing the flexibility of FPGAs and the operability of CPUs,

many parallel channels of computation can be performed synchronously in fabric and then sent to

CPU memory directly via fabric DMA engines. This pairing provides a convenient way for fast

preprocessing to be done in fabric and then dynamic postprocessing to be done in software.

1.1 Objective and Contributions

This thesis seeks to expound on the work of Luke Newmeyer whose thesis presented an

FPGA hardware design for the DSP chain of a UAV radar detection system [1]. Newmeyer’s design

2
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Figure 1.1: First generation integrated system with FPGA DSP architecture by Luke Newmeyer

offered a 4-channel processing chain for 1-dimensional radar, acting as a proof of concept for

small-scale, low-power UAV traffic management. The final integrated system using Newmeyer’s

firmware is shown in Figure 1.1. Our task now is to use this design as a foundation and design a

second generation system which can perform target estimation on a 2-dimensional radar feed using

16 parallel input channels, while maintaining a small form factor and reduced power usage. This

project is intended to contribute to the research that has been mentioned previously as a solution

to local air traffic and information systems (LATIS) for UAV devices. The project as a whole can

be broken down into three primary parts: radar transmission and reception hardware, sampling

and preprocessing, and postprocessing for target detection and avoidance. Specifically, this thesis

addresses the second part—the sampling and preprocessing subsystem—and includes the HDL

architecture for a digital signal processing chain built in FPGA fabric, as well as information

about the PetaLinux kernel and software API which are used to interface with the DSP chain’s

configuration features. The integrated system which contains all of this is shown in Figure 1.2.

Note that all data shown in Chapter 2 was captured using implemented bitstreams in the FPGA

fabric of this system.

Many of the individual blocks in this chain will be tried-and-true modules which are either

found in Xilinx’ IP catalog or are made custom using traditional algorithms. These include mean

subtraction, windowing, FIR filtering, decimation, spectral estimation with an FFT, cross-channel

3
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Figure 1.2: Second generation integrated system using the DSP architecture presented in this thesis

correlation, and averaging of correlation frames. Additional control logic will also be developed

to provide maximum configurability of various DSP options as discussed in Chapter 2.

In conjunction with fabric processing, user-space code running in a PetaLinux kernel en-

vironment will provide a variety of API functions to configure and interact with a register-space

controller (called the LATIS radar firmware, or LRF, Controller) in the fabric. From this API, post-

processing algorithms will be able to access the results produced by the fabric to compute target

estimation.

It is worth noting that while the fabric DSP chain is its main focus, this thesis briefly

introduces the PetaLinux image configuration process and user API functions to provide context

and explain how the fabric is meant to be integrated with everything else.

Upon its completion, this thesis makes the following contributions:

4
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1. A complete 16-channel HDL DSP chain preprocessing architecture—which is small, inex-

pensive, and power efficient—to make local air traffic management feasible for small-scale

UAV operations

2. Variable-frequency data sampling combined with DSP control options (optional windowing

and mean subtraction, variable averaging frames and decimation, run-time configurable win-

dowing and FIR coefficients, etc.), to provide good SNR and balance precise range resolution

with maximum target range of airborne UAV devices

3. Advanced fabric timing analysis—ranging from register pipelining to custom Vivado synthe-

sis and implementation strategies—for high-utilization, high-congestion HDL DSP designs,

to make possible a fast, low-latency DSP chain with sufficient throughput to process 16 par-

allel channels of radar data with full correlation and averaging in real time at nearly 2kHz

frame rate

4. Predictable chirp and data-frame timing using fabric counters (including fabric-controlled

DMA transfers) to enable accurate, real-time Doppler processing of airborne UAVs

1.2 Overview

The following chapters cover the topics that we have described here in the context of their

contribution to UAV LATIS research. The first of these chapters (Chapter 2) discusses each IP

developed for the design and gives an overview of its configuration options. The second chapter

(Chapter 3) provides an in-depth analysis of the measures taken to meet timing at 300MHz given

the design’s high utilization. This topic is given its own chapter because of the amount of infor-

mation collected on the subject and because it makes the design possible with all of the desired

features. The last two chapters (Chapters 4 and 5) give a brief overview of the process for config-

uring the PetaLinux image and how the software API was developed to interface with logic in the

fabric.

The appendices provide additional information and associated documents for specific top-

ics. Appendix A provides the XDC constraints file developed for the fabric’s implemented design

in Vivado, Appendix B contains information about every signal available to the user from the LRF

5
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Controller fabric registers, and Appendix C contains the project’s PetaLinux device tree and a

PetaLinux tutorial created in conjunction with debugging done over the course of the project.

6
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CHAPTER 2. DIGITAL PREPROCESSING OF UAV RADAR DATA IN FPGA FABRIC

2.1 Introduction

As we said in the introduction, this thesis describes only part of the larger UAV traffic man-

agement system—specifically, the digital preprocessing performed on fast-time radar data. Earlier

in the system, a radar chirp is transmitted and its echos are detected by each antenna of a 16-

antenna array. These signals are mixed with the original transmission signal, and from the mixing

products, filtering passes the frequencies which correspond to the difference between original and

echoed chirps. These frequencies, which usually reside in the kHz and MHz range, correspond

to UAV target range in a linear fashion (assuming a linear chirp), and therefore contain the in-

formation that we want to process [8]. Having been mixed down to a manageable range, these

frequencies can be directly sampled by ADCs and processed immediately in the FPGA.

Range computation from these frequencies is fairly straightforward as it relies firmly on

spectral estimation magnitude, but with a system containing multiple input antennas, angle of

arrival can be estimated with respect to zenith and azimuth, forming a hemispherical view whose

base plane is the plane on which the antennas lie. This computation depends on cross-channel

spectral correlation, from which we can estimate arrival angle using the correlation products. In

other words, spectral estimation provides a complex output for each range bin where the magnitude

across channels will be similar for a given target (corresponding to range) but the phase will be

slightly different. This difference in phase is effectively subtracted in the process of correlation,

providing a consistent angle difference across the correlation matrix which can be used to estimate

angle of arrival.

The angle of arrival estimation itself is done through beamforming in software postpro-

cessing. This process spatially filters correlation data to best receive signals from a desired target

(UAVs in this case) while attenuating returns in other directions [17]. This allows the UAV traffic

management system to “latch on” to targets and monitor them, estimating where targets are and
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collecting information about them. Following target estimation, potential targets are used in DAA

algorithms for UAV traffic management and collision avoidance.

While beamforming and target estimation algorithms are run in software where different

algorithms can be developed and tested with minimal recompiling effort, spectral estimation and

correlation are foundational for most postprocessing algorithms and can all be done quickly in the

FPGA fabric which excels at parallel computations which are predictable and unlikely to require

modification. With analog radar on the front-end, and target estimation algorithms on the software

back-end, the preprocessing DSP chain in the FPGA fabric is the integral link between them. In

this chapter we describe how the fabric computation works and how it contributes to our goal of a

small and efficient UAV traffic management system.

2.2 Design Overview

Our primary objective is to design an architecture which can quickly process 16 parallel

channels of incoming data and perform at least spectral estimation and cross-correlation for radar

target estimation. Beyond this, we also desire additional signal conditioning operations such as

filtering and averaging, as well as enough configurability to allow us to choose what operations to

perform and how to process incoming samples.

Thus, the DSP processing chain in this design is made up of several functional blocks:

serial-to-parallel input formatting, mean subtraction, windowing, FIR filtering, downsampling,

FFT spectral estimation, cross-correlation, and averaging. For maximum configuration, these

blocks are connected to and controlled by state machine controllers and glue-logic units such as the

the LRF Controller, AXI DMA engines, DMA engine controllers, AXI4-Stream interface switches,

clock domain crossing buffers, and IO conditioning circuits. Together, the functional blocks and

their connecting logic create an integrated chain which is self-managed and consistent. A diagram

of the DSP chain functions is shown in Figure 2.1, and the Vivado IPI block diagram is shown in

Figure 2.2.

This discussion is not an exhaustive look at how all of the included IP can be used, nor

is the purpose to explore the various status and control options of each. Rather, we look at how

each piece fits into the whole to accomplish the UAV traffic management goals of the project. All

sections describe the IP’s architecture and purpose, and some include data plots and performance

8
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Figure 2.1: Block diagram of essential DSP chain operations; courtesy of David Buck

results in the context of their intended use-case. For convenience, each IP which contains a state

machine has a high-level state machine diagram to show essential transitions (not exhaustive); all

diagrams begin in the INIT state (except mean subtraction which begins in WAIT) upon reset and

startup.

For complete information about features and configurability, see the IP product guides, in

particular the LRF Controller product guide which explains the pinout definition for all control-

status interfaces (CSI) of the functional blocks and memory-mapped space, and which is included

in Appendix B. Furthermore, all code and project files created for this design are found in the

project’s git repository.

2.3 Latency and Initiation Interval

Two of the most important specifications of digital design are its latency, which describes

how many cycles are taken between input and output, and its initiation interval, which describes

how many cycles after beginning one computation that another can begin. In this section we make

note of the latency of each IP individually and then discuss the packet latency of the design as a

whole. We define packet latency to mean the latency from the beginning of the first sample of a

packet to the end of the last sample being sent to memory, while IP latency refers to the cycle delay

between when a single sample is present on the input of an IP and when it is seen on the output.

We then discuss the packet initiation interval which defines the lower limit for radar PRI.

2.3.1 IP Latency

While every IP in the DSP data path has some constant latency associated with it, some IP

have latency which depends on wait states that may be asserted by downstream IP. This scenario
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is unlikely except when interfacing with the DMAs which may pause a transfer if memory access

is congested. Table 2.1 describes the latency of each IP assuming that no wait states are asserted.

It also assumes that a packet is being processed so that data is being processed on every cycle. For

general reference, all individual IP except the downsizer (see below) have an initiation interval of

1, i.e. new data is accepted at the input on every cycle once it has begun.

2.3.2 Packet Latency

While Table 2.1 is interesting, and may be helpful for using and observing the functionality

of each IP, it really doesn’t tell us how long the chain takes as a whole. Because processing

occurs in packet format, the true latency we care about is how long it takes for a fully sampled

packet to make it from one end to the other. Thus, we need to know the packet latency, which

depends on features like clock domain crossings (which is complicated by the changing sampling

frequency) and variable downsampling rate and window sizes. Packet latency which is subject

to change because of clock frequency and packet size requires more than just a count of clock

cycles from beginning to end, and may be more easily described using time rather than cycles for

Table 2.1: Latency for data path IP (functional IP)

IP Latency Notes
Shift register 2 —
Mean subtraction 1 —
Windowing 4 —
Clock Converter ? Latency is very unclear for this IP [18], though 8 sync

stages are used
FIR Compiler 30 Note that this IP assumes an input to output valid data ratio

which is not 1 [19]
Downsampling 0 Data has latency 0 but downsampling implies latency of the

downsampling factor between outputs
FFT 14489 Counted from start of first word to end of last [20]
Correlation 12 Blocking configuration is 12, nonblocking is 9
Downsizer 2 Latency is always 2 but the initiation interval depends on

input and output size; in our case, II is 2
Averager 4101 Latency of input to output is technically 5 for computation,

but averaging of packets implies an entire packet must be
introduced before output is available, making latency 4101
(for one packet of 4096)

11
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the sake of calculating PRI. So, we will continue this discussion by counting cycles given certain

configurations and then calculate the total packet time in seconds.

The simplest way to explain is to provide application examples which outline the packet

latency in extreme cases. In the following examples, we assume the second clock (the AXI clock)

is running at 300MHz, and point out that the packet size is constrained by the FFT size of 4096:

1. Consider a sample frequency of 40MHz (the specification max) running with a downsam-

pling rate of 1 and therefore a packet size of 4096 samples, which will be processed through

the full chain and sent to memory via the averager DMA. The startup latency taken to pass

from the FPGA input pads, through the shift register, mean subtraction, windowing, FIR

Compiler, and downsampling, and then into the FFT function takes the latency of the indi-

vidual IP plus the size of the packet, or (2+1+4+8+30+0)+4096 = 4141 total cycles

(we assume clock converter latency is the same as sync stages). Running at 40MHz on the

ADC clock, this takes about 103.5µs. This amount of time is the total time taken on the ADC

clock, because the next IP is the FFT which requires the whole packet to be present before

processing.

Because the total ADC latency includes the time it takes to enter the FFT, we can subtract

4096 from the FFT latency which includes the cycles taken for the whole packet to enter and

exit the IP, starting us with 10393 AXI cycles. This next part is more challenging because

of the downsizer and FFT half frame rule, but after adding and subtracting the FFT packet

exit time, downsizer doubling time, and averager done flag which is asserted a few cycles

after the last word is accepted, we get the following latency equation for the AXI clock:

(10393− 4096)+ 4096+ 12+ 5 = 10410 cycles. In this equation, we subtract 4096 from

the FFT latency which is the packet exit latency (leaving us with just the FFT processing

time), then we add 4096 to this difference because the downsizer takes 2 cycles for each

FFT output and we only use 2048 outputs. Even though the FFT must still flush the latter

2048 samples, we only use half of the packet size because the averager asserts its done flag

half way through the FFT dumping its packet (at which point the averager has been filled

with the first 2048 samples). Finally, the 12 and 5 correspond to the latency of the averager

and correlator IP themselves. Because there is some state machine latency, control flow, and

12
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pipeline registering between IP in the design, we can add, say, 10 cycles to this total, giving

us a final result of 10420 AXI clock cycles, or about 34.7µs. 1

Thus, adding the ADC and AXI clock domains, we obtain a final latency (from first input to

first output) of (4141/40E6+10420/300E6)×300E6= 41478 AXI clock cycles or 138.3µs.

In the fabric, we verified this by adding a counter which reports the time between the start

of processing (when the LRF Controller asserts the start flag) and the end of it (when the

averager sends its done pulse). The Controller reported a total latency of 40818 AXI clock

cycles which is fairly close to our estimate. Reality proved to be about 660 cycles or 1.6%

faster than our estimate. This could be due to inaccurate estimates by Xilinx IP or early

processing of data in IP like the FFT before the full packet is present.

Now, the data is still in the FPGA RAMs at this point, and the DMA transfer hasn’t taken

place. As we discuss later on, a DMA transfer has been observed to take 131407 AXI

cycles, or about 438µs, which is almost 3 times longer than the actual processing chain in

this example. Thus, the entire chain, including processing, takes 576µs. Luckily, the DMA

transfer can overlap with the processing as long as the new packet being processed doesn’t

begin to try to fill the averager and as long as the FFT has flushed its latter 2048 samples

before new samples are introduced. Because the FFT is always immediately dumped and the

DMA transfer takes quite a bit longer than processing, the latter condition will always be met,

even if the DMA transfer time is the lower limit. But, the averager must be emptied before it

sees a new input, meaning that starting a new packet is be possible every 131407+4101 =

135508 cycles, or 452µs, which is the final result for our packet initiation interval. Notice

that the real bottleneck in this problem is the DMA, and that our calculation of the full

latency really only went to show that it took less time than the DMA transfer. New packets

can only really be started as quickly as the DMA can send a packet of data to memory.

2. Next, consider a sample frequency of 10MHz (the specification min) running with a down-

sampling rate of 31 and therefore a packet size of 4096× 31 = 126976 samples. Fol-

lowing the same logic as above, we obtain a total latency into the FFT of 127021 cy-

1Notice that packet latency is essentially just the sum of the IP latencies plus the size of the packet, but that this is
complicated by the fact that the packet size changes along the way. In these computations we must be sure to properly
handle packet size changes each time they occur.
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cles or 12.7ms. This vastly outdoes the processing time of the rest of the chain includ-

ing the DMA transfer, which takes exactly the same latency as in the previous example.

Thus, as soon as packet size is large enough with a low enough sampling frequency, it is

the sampling that is the bottleneck and not the DMA engine. Assuming the rest of the

chain takes the same amount of time to process, we are left with a total of approximately

(127021/10E6)+((41478+131407)/300E6) = 13.28ms for a single packet, or 12.84ms if

the DMA transfer all overlaps the slow processing (which it always will in this case).

These two examples assume averaging is only 1 packet. If multiple packets are averaged,

the processing time is multiplied by the number of averaged packets, which is then added once to

the DMA transfer time after a group of packets is averaged.

Because the combination of downsampling factor and sample frequency change the length

and time of a packet, changing them will change the packet latency. In order to properly configure

the hardware, care should be taken when setting the LRF Controller PRI counter and other config-

urations which affect packet size. Not all combinations will produce valid or expected behavior,

and may cause DMA engines to hang or data to be corrupted. The latency guidelines discussed

here should provide some idea of what to consider during configuration.

2.4 Power Consumption

Power metrics for this design are as of yet incomplete, though the current Vivado power

estimate shows it using around 10W of power. The breakdown for this estimate is shown in Fig-

ure 2.3. According to the tools, this estimate has a confidence rating of “low” because switching

probability for the IO wasn’t explicitly declared. However, Vivado assigns a default static proba-

bility of 0.5 to signals and a toggle rate of 12.5%. This means that the tools assume signals have

an equal likelihood of being a 1 or a 0 (which is a fair assumption for ADC data) and that they will

be switching about once every 8 cycles [21]. This latter assumption will likely be faster than the

upper bits of each ADC will be changing and slower than the lower 4 or 5 bits will be changing

(due to noise). On average it may not be far off from reality, but it is hard to know without detailed

observation of actual radar data.
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Figure 2.3: Vivado power estimate breakdown

Without accurate knowledge of the inputs, this estimate may be imprecise but it does given

an idea of the relative power consumption of each resource group in the fabric, including the PS.

Power consumption for the fabric is assumed to be generally better than what a CPU could

accomplish if it were to achieve the same amount of computation and throughput in the same

amount of time. This is not necessarily a bad assumption [9] [10], though taking such metrics has

not yet been performed and is left to future research as described in the conclusion in Chapter 6.

2.5 Serial to Parallel Shift Register

The first functional block in the DSP chain is a custom serial-to-parallel shift register which

takes the serial bits of the ADCs and formats them in parallel words for processing. Because the

IO constraints and timing challenges of this IP are unique, this section offers a lengthy discussion

of problems encountered and methods used to achieve timing closure within the desired sampling

frequency range for this IP.

In the following paragraphs, “frame clock” refers to the clock which delineates groups of

14 DDR bits, while “data clock” refers to the clock which registers the serial DDR bits themselves.
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The word “frame” is synonymous with “word” used in this and other IP descriptions, and refers to

a group of 14 bits which corresponds to a single sample of the ADCs.

The following list outlines constraints that the shift register must meet, either as the con-

sequence of radar design objectives, or because of other custom hardware such as the ADC chips

with which digital logic in the fabric must interface correctly.

1. Digital data formatted as defined by Analog Devices’ AD9257 ADC chip [22]

(a) 14 bit DDR words transmitted serially

(b) Differential data, frame clock, and data clock lines

2. Data streams which come from two ADC chips (8 channels per chip) whose clock and data

lines may not be synchronous

3. An ADC sample rate range of 10–40 MSPS

(a) 70–280MHz data clock frequency (due to the 14 bit DDR words arriving at the sample

frequency range)

(b) Effective serial bit rate of 140–560MHz (as implied by DDR data at the data clock

frequency range)

4. Input signals which include 16 differential data inputs, 2 differential data clock lines, and 2

differential frame clock lines (for a total of 40 input wires)

2.5.1 HDL Design for Variable Clock Timing

In order to achieve accurate shift register performance on DDR data, some Xilinx FPGA

chips provide dedicated DDR register primitives that convert data of varying lengths from serial to

parallel. While there are various ways to configure these primitives, because the available output

widths for most configurations would complicate achieving 14 bit words, the design choice was

made to use the simplest primitive instantiation—the IDDRE1—which samples one rising edge

bit, then the next falling edge bit, and produces both bits in parallel on the following rising edge of

the data clock [23].
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This primitive was replicated for every input channel of data, and each channel was regis-

tered 7 times to produce 14 bit parallel output words. After the last shift is performed, the words

are registered once to hold the completed, parallelized words constant for a full cycle of the frame

clock, allowing for safe sampling of the parallel words at the output of the shift register using a

time-advanced version of the frame clock originating from the MPSoC block—the MPSoC clock

which drives the ADCs is also used directly to sample the output of the shift register, making the

shift register output frame clock a time-advanced version of the ADC frame clock.

We note here that an alternative solution using the data clock to register bits on both rising

and falling edges, and using ADC frame clock to directly sample data out of the shift registers, may

be a simpler solution but presents significant timing challenges. The issue is that the rising edge of

the frame clock as produced by the ADC is aligned exactly with the first bit of a new frame (while

the data clock can be dynamically phase delayed relative to both of these [22]). This means that in

order for the frame clock to meet timing with the data clock registers while sampling at 40MHz, it

would have to meet an ideal hold timing margin of between 0 (assuming a data clock phase of 0°)

and 1.79ns (assuming a data clock phase of 360°) which is very small for the UtraZed-EV MPSoC.

This is also assuming that all PCB lines are perfectly phase matched, that all IO buffers provide

exactly the same delay, and that the distance from the frame clock buffer to each data register is the

same. This latter point is actually a poor assumption because clock signals generally pass through

different input buffers than data signals do. Such a small margin can quickly lead to metastability

and bit errors when these variations occur.

Alternatively, different timing challenges arrive when the data is registered in IDDRE1

registers but both clocks (data and frame) are buffered and used as clocks to register bits and

words. On one hand, the bits being registered on the data clock are shifted according to the phase

of the data clock, thus throwing both data and clock slightly out of phase with the frame clock.

On the other hand, the IDDRE1 primitive adds a full data clock cycle of latency (2 bits-worth) to

the data path which the frame clock does not experience, putting the frame clock even more out

of phase with the data. To avoid these phase issues, rather than directly clocking completed words

out of the data registers with the ADC frame clocks, the frame clocks were treated as regular data

signals and passed through IDDRE1 registers which were driven using the data clock, allowing

them to be sampled (and thus precisely synchronized) with the data. This method is not new,

17



www.manaraa.com

and was motivated in part by work done by Andreas Olofsson shown in his public repository

[24]. These new sampled versions of the frame clock were used as a “valid” signal to clock out

completed parallel words on the data clock, where they are sampled on the time-advanced frame

clock mentioned previously. Because the time-advanced clock comes from the same source as the

ADC frame clock, both clocks are guaranteed to have exactly the same frequency but with some

unknown phase difference. To avoid the possibility of poor timing due to this unknown phase, an

optional clock inversion circuit was placed in the shift register so that either polarity can be used.

One of the two is always guaranteed to sample with proper timing.

2.5.2 Vivado Implementation Constraints

To properly monitor timing and ensure that the hardware behavior matched simulation

behavior, input timing constraints were added to the Vivado XDC file and adjusted in an iterative

fashion using the Vivado timing reports. Using these constraints we were able to ensure either that

the shift register met timing or that any timing errors we observed matched expected outcomes and

could be safely ignored (using false paths, clock groups, etc. [25] [26]). The input constraints take

a form similar to the following:

1 set_input_delay -clock [get_clocks virt_bit_clk] -min 0.12 [get_ports {

bit_data_in_* word_clk_ *}];

2 set_input_delay -clock [get_clocks virt_bit_clk] -max 0.25 [get_ports {

bit_data_in_* word_clk_ *}];

Notice that both lines constrain the rising edge of the word clocks (frame clocks) and data

signals, but that the first line constrains the “-min” delay while the second constrains “-max” delay.

These min and max tags describe the earliest and latest that the constrained signal is known to arrive

following a clock edge.

Additional constraints for the falling edges, as well as for clock grouping, false paths, and

other timing attributes, are described in the XDC file which is included in Appendix A. Also note

that additional placement and routing constraints are discussed in Chapter 3—when integrated into

the full design, congestion often prevented the shift register from meeting timing so additional

constraints were created to force adequate placement of the shift register.
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2.5.3 Shift Register Performance on Variable Clock Frequencies

To verify performance of the shift register, the ADCs were configured to produce a PN9

sequence at various sample frequencies. This sequence was formatted in the shift register and sent

to memory via DMA engine where it was then checked for correctness in a userspace program.

Using the design considerations and timing constraints discussed in this section, the implemented

shift register produced accurate output across all ADC channels from 10 to 40 MHz (and following

some implementations was seen to succeed at ranges from 8 to 50 MHz) using a data clock phase

offset of 60°. In all cases, including many iterations of the fully implemented design, the shift

register meets our specifications and produces correct output within the desired sample frequency

range.

Balancing SNR with range resolution requires careful selection of packet size (including

chirp length), sample frequency, and downsampling rate. For this reason a run-time range of 10–

40MHz is desired, as it allows UAV radar systems to change such configurations to best meet the

needs of specific traffic profiles. Because a sampling frequency can only capture spectral informa-

tion up to the Nyquist frequency, decreasing the sampling frequency decreases the bandwidth of

measurable frequencies while higher frequencies increases that bandwidth. As the frequencies in

the signal we are sampling correspond to target ranges, the lower sampling frequencies will shorten

the maximum detectable range of a UAV target while a higher sampling frequency will increase

the maximum range. This comes with a tradeoff, however, as the fabric FFT size is fixed and

higher maximum range comes at the cost of lower range resolution (as a larger frequency range is

divided among the same number of available bins). This balance between range and resolution is

discussed throughout this chapter in the context of each IP. As the first point of contact with data,

this IP provides a foundation which guarantees that the full desired range of sampling frequencies

is possible to provide all of the corresponding ranges and resolutions.

2.6 Mean Subtraction

Due to the chirp’s transient response in the analog hardware, there is low frequency distur-

bance in the data for a short time following the start of the chirp. This disturbance results in DC and

other low frequency phase noise which can be amplified by windowing and leak power into neigh-
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boring low frequency bins, reducing target visibility in those bins. Because this low-frequency

response is fairly constant from chirp to chirp, we placed a mean subtraction IP between the win-

dow and shift register. This IP estimates the mean on every packet of data and subtracts that mean

from the following packet. Thus, the mean subtraction will give a good approximation for even a

changing mean assuming that that mean changes relatively slowly over time. Experimentation has

shown that this is a fairly good assumption.

2.6.1 DSP Resource Inference for Multiply-Accumulate

Vivado supports two ways that specific resources can be requested in HDL: instantiation

and inference. In instantiation, the user uses a template provided by Xilinx to connect and configure

a desired primitive. This can be labor intensive because of the many configuration options, and can

make projects hard to maintain. Some primitives are wrapped in HDL modules to provide access to

specific features, such as the Xilinx multiply IP which wraps a DSP48 primitive to provide simpler

access to a variety of multiply-related functionality. This allows the user to add the multiply IP

from the Vivado IP catalog to their project and then instantiate it as a component rather than a

primitive. This is even more difficult to maintain because template overhead is coupled with IP

configuration options which must be configured from the user interface or via TCL commands, not

through the HDL itself. The second way to use a specific primitive is through inference, where

the user can follow certain design practices that the synthesis tool recognizes as a corresponding to

specific primitive. For example, the ‘*’ operator in Verilog and VHDL is interpreted as a multiply,

and Vivado can use this to infer a DSP48 primitive. Then, registering this multiply can enable a

pipeline register internal to the DSP48. Inference makes the code more concise and clean but can

be hard to understand because the intent of the code may not be apparent without understanding

the inference technique. Additionally, inference requires certain syntax and careful observation of

resource parameters to produce the desired results. Because HDL can be implemented in different

ways, poor coding practice can lead to suboptimal circuits which use the wrong resource (e.g. CLB

logic to perform multiplies) or which use resources external to a primitive that could be included

internally.

While most IP in this project were developed using instantiations of Xilinx IP for consis-

tency (such as AXI4-Stream FIFOs and FFTs) the mean subtraction IP was designed with inference
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Figure 2.4: Mean subtraction state machine

based on a multiply-accumulate (MAC) circuit in a single DSP48 resource. Internally, the DSP is

registered at three places using pipeline registers and connects a reset signal to the final register

in the pipeline (which follows the accumulate operation) so that the accumulation can be reset for

every new mean that is calculated. To accomplish division after accumulation, 12-bit shifting is

done to correspond to the base packet size of 4096, and a 32-word lookup table is used to perform

a fractional multiply depending on the decimation factor.

This core is replicated once for each channel and wrapped with a small, two-state state

machine shown in Figure 2.4 to count incoming words and update registers which store the mean

for each channel. After a new mean is computed, it is subtracted from every input word in a

free-running fashion so that the control-flow of the data stream is minimal and doesn’t require any

handshaking. This makes it easy to enable and disable the mean-subtraction feature at any time

during processing. For better timing, the subtraction operation is registered once, adding one cycle

of latency to the data path (the MAC registers which estimate the mean aren’t included because

they aren’t part of the data path).

For maximum correctness, the IP was designed so that the start signal which begins the

window function (counting the first word at it’s input) also corresponds to the first word inside the

MAC’s DSP48 which is averaged for mean estimation.
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2.6.2 Mean Subtraction Performance on Oversampled FFT Data

Figure 2.5 compares raw ADC samples of input noise (interpreted as 16-bit signed integers)

with and without the mean subtraction enabled. In the left plots which show time data, enabling

mean subtraction visibly recenters the data at zero. The plots on the right show an oversampled

FFT with zero padding to extend the 4096 packet size up to 8192 total samples. This oversampling

shows the spectral leakage effects of the rectangular window and how they are resolved by mean

subtraction.

In application, the critically sampled fabric FFT shows slight improvement in the DC bin

with mean subtraction, but the FFT’s mathematical assumption of periodicity naturally helps to

ignore spectral leakage caused by windowing, and so doesn’t produce the significant spectral leak-

age shown in the plots here. However, as ADC data is made available to the user in the event

that algorithms are to be run on time-domain samples, the mean subtraction can provide spectral

improvement.

2.7 Windowing

Windowing for this design was done using a custom IP which both packetizes incoming

data and multiplies it with window coefficients. The purpose of this block is to provide a consistent

multiple-of-4096 packet size for each chirp based on a downsampling value that the user provides.

Thus, the downsampling IP later on can reduce the packet to the proper 4096 samples required by

the FFT. The state machine for this IP is shown in Figure 2.6.

The WAIT state ensures that proper counter values are obtained before the IP proceeds to

allow transfers, and the IP resides by default in the IDLE state until the LRF Controller requests the

start of a packet. While a packet is not being windowed, anything at the input is dropped. When the

packet is requested, the window reads in downsampling-factor-times-4096 samples, multiplying

them one at a time by 16-bit window coefficients from a reconfigurable BRAM block, after which

they are made available at the output via non-blocking AXI4-Streaming protocol (slave-asserted

wait-states are not supported for this IP) [27].

To reduce BRAM resources by half, while making it possible to achieve a downsampling

factor of 31, this IP always assumes a symmetric window. To create a full packet, it will increment
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(a) Raw ADC data without mean subtraction

(b) Raw ADC data with mean subtraction

Figure 2.5: Comparison of raw ADC data with and without mean subtraction; left plots show raw
ADC data with rect window, right plots show oversampled FFT computed in software

the BRAM address and read half the packet length for the first half of the packet, and then decre-

ment back down to create the second half. Because the Xilinx BRAM Controller requires 32-bit

memories, coefficients are stored in pairs and the window function reads out two words at a time.

This doesn’t affect operation, but does require unique accommodations in the state machine.

Other features for this IP include sign shifting to recenter offset binary data at zero (or

accomplish the reverse), as well as a max-data counter which allows the IP to zero the output

after a certain point in a packet. Because the window function is configurable at runtime, the user
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Figure 2.6: Windowing state machine

can swap out coefficients depending on the spectral response which is most helpful to UAV target

detection. This can happen at any time without consequence to the processing chain because the

coefficient BRAMs are configured to have write priority and are managed by the independently

mapped BRAM Controller (see Chapter 5 for more information on updating window coefficients).

2.7.1 Windowing Performance on UAV Target Data

Figure 2.7 shows an example of the effects of hardware windowing given two different

windows: rectangular and Hamming. The input data for these images is radar data from a chirp

loopback test which passes the chirp signal through several hundred meters of optic cable to mimic

a bright UAV radar target about 800 meters away. This corresponds approximately to bin 66 in the

FFT as shown in the plots on the right. Notice how the Hamming window greatly reduces spectral

leakage compared to the rectangular window at the cost of lower overall power (the images show

about 5dB loss) and distinct spectral sidelobes.
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(a) Raw ADC data with rectangular window

(b) Raw ADC data with Hamming window

Figure 2.7: Comparison of windowed ADC data using rectangular and Hamming windows; left
plots show windowed ADC data, right plots show software FFT

2.8 FIR Compiler

FIR filtering for this design is done using the Xilinx FIR Compiler configured for 16 parallel

paths, with an input frequency of 40MHz and an output frequency of 300MHz. This distinction

in frequencies reduces resources by allowing for fewer DSPs which can be reused and more fully

utilized on the faster clock as described in the documentation [19]. The FIR coefficients are created

and formatted externally and then sent to the Compiler via a memory-mapped-to-streaming register
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in the LRF Controller. This configuration creates a relatively small hardware design which can be

configured with new coefficients at run time.

The intent of this filter is to act as a precursor to the downsampling block described in the

next section so that antialiasing filters can be applied if needed before downsampling is performed.

As this IP is made by Xilinx, its architecture and other features will not be discussed here,

however, like the window coefficients, these coefficients are runtime configurable so that multiple

filters can be stored and applied as needed from user-space code. Refer to the FIR Compiler product

guide [19] for more information about the IP itself, and refer to Chapter 5 for more information

about updating FIR coefficients.

2.9 Downsampling

The downsampling function (also called the decimator) is a zero-latency IP which uses the

AXI4-Streaming protocol to simply indicate that every Mth word is valid to create a downsampling

factor of M. The state machine is shown in Figure 2.8. Additional features include resyncing if the

downsampler becomes misaligned with a packet.

The purpose of this IP is to allow us to achieve a wider variety of sample frequencies

that would otherwise not be possible. The ADC chips used in the design are only rated for a

minimum of 10MHz, so in order to run at the lower sample frequency of 2MHz used in the previous

generation design, downsampling is a necessary step.

All of the IP up to this point function together to support a range of sample rates with equiv-

alent SNR: the sample rate can be set between 10MHz and 40MHz, the chirp can be lengthened

so that all samples are taken of chirp mixing products, the window function can count up to 31

multiples of 4096 samples, and the FIR compiler can filter all samples in a packet of any size that

it receives. Thus one possible way to sample at an effective rate of 2MHz, is to take 20480 samples

at 10MHz and then window, filter with an antialiasing filter, and downsample by 5 to produce the

4096 samples required by the FFT. Because the FFT packet size is maintained across input packet

sizes, SNR should be relatively stable for whichever configuration profile is used (independent of

range and resolution).
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Figure 2.8: Downsampling state machine

2.9.1 FIR Filtering and Downsampling Performance on UAV Target Data

Figure 2.9 shows the importance of using an antialiasing lowpass FIR filter before down-

sampling. The plots show loopback data which is first sampled at 40MHz and then passed through

the window function containing a Hamming window. In Figure 2.9a the data is filtered using a

simple delta to effectively pass the input through to the output. Figure 2.9b shows the same signal

which is instead filtered with a π/20 lowpass filter. Following the FIR filter, both sets of data are

decimated by a factor of 20 (for an effective sample rate of 2MHz) and then processed in the fabric

FFT engine. The FFT processes 4096 bins, of which the log value (in dB of the FFT’s conjugate

square) of the first half is shown in the plots.

Because we are using a downsampling rate of 20 in this test, using the π/20 antialiasing

filter suppresses all of the spectrum beyond the Nyquist rate, effectively producing a π filter around

the spectral content that we desire. In Figure 2.9a, notice that the noise floor is close to 35dB, and

there are several prominent peaks to the left of the target signal which is near bin 1300. When the

FIR filter is applied, the noise floor is lowered across the spectrum and several of the peaks disap-

pear. As we have discussed, the lower sampling frequency of 2MHz increases range resolution for

a lower maximum range of UAV targets, which is why the target shown in bin 66 in Figure 2.7 is

now shifted to a higher bin.
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(a) Loopback data fabric FFT with delta FIR filter and M = 20 downsampling

(b) Loopback data fabric FFT with antialiasing FIR filter and M = 20 downsampling

Figure 2.9: Comparison of fabric FFT data with and without antialiasing FIR filter before down-
sampling

2.10 FFT

To perform spectral estimation on the data after windowing, filtering, and downsampling,

a custom IP was created which wraps the Xilinx FFT core [20]. Using the Xilinx core simplified

the design, while creating a wrapper allowed for additional monitoring and packaging features, as

well as more parallel channels than the Xilinx FFT allows. The wrapper state machine is shown in

Figure 2.10.
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Figure 2.10: FFT wrapper state machine

The FFT cores for this IP were configured with radix-4 butterfly multiplies and a transform

length of 4096. The IP’s configurable scaling schedule was included as a user configuration option

via the LRF Controller. Furthermore, the IP was configured as non-realtime, which means blocking

is supported on both sides of the IP. This allows for downsampling of the FIR data on the input and

interleaving of the averager packets on the output without packet corruption.

Additional wrapper features include half or full FFT outputs per AXI4-Streaming protocol.

If half is selected, the first half of the packet is transmitted and the master tvalid and tlast signals

are terminated halfway through the packet. Because our input data is all real, the two halves of the

FFT are conjugates, meaning that we lose no information by only using the first half for further

processing. This then allows for reduced resources following the FFT as described in the averager

section.

Earlier, we mentioned the tradeoff between range and resolution. This is largely because

the FFT has a fixed size of 4096 samples which means that increasing the sampling frequency to

get a higher maximum range comes at the cost of greater distance packed into each bin, which is

to say, reduced range resolution. A variable FFT point size configuration is possible but increases
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complexity and resources usage; as more than 4096 samples would use too many resources, and

we wouldn’t want less than 4096, we chose the fixed implementation.

2.11 Cross-Correlation

To perform correlation across frequency bins, we created a correlation IP which generates

the upper triangle of the correlation matrix by multiplying each channel with the complex conjugate

of all other channels. Because the FFT produces 16 complex channels, correlation produces a

total of 256 channels, of which 136 are real and 120 are imaginary. Only the upper triangle is

required because the matrix is Hermitian symmetric, and because the diagonal of the matrix is the

autocorrelation of the channels, the imaginary part is zero allowing us to compact the data further

ad only produce the real half of the diagonal (reducing the imaginary channels from 136 to 120)

along with the full complex output of every other channel.

Because of it’s relative simplicity, this IP needed no state machine. Additionally, rather

than interleaving the data into a smaller systolic pipeline array, the UltraZed-EV board has enough

DSP resources for a fully parallel correlator which simplifies the design even further, allowing for

136 parallel complex multipliers with very short latency. Thus, on every cycle a new FFT bin can

be introduced and processed, and each correlation word can be produced one after the other at the

output.

For the sake of interleaved averager packets discussed later on, the IP was built with block-

ing multipliers. The blocking configuration is essential for downstream backpressure applied by

the downsizer which sends interleaved channels to the averager and only accepts a new word on

every other cycle.

2.12 Averaging

The last functional stage of the design, averaging, makes use of the FPGA’s UltraRAM

blocks to create several parallel multiply-accumulate channels. Each URAM block has a width of

72 bits, and a depth of 4096 [28], allowing us to pack each one with two channels of 36 bits (which

is to say an adjacent pair taken from the 136 real and 120 imaginary channels). Additionally, due

to failed routing with so many parallel data paths in the design, the number of URAMs used for
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Figure 2.11: Averager state machine

a fully parallel averager was divided in half and the data was interleaved to use the full depth of

the URAMs. Referring back to the FFT section, our fully real data input means that we only use

the first 2048 samples of the FFT. For the averager that means that each correlator output word

downsized into 2 serial words can be interleaved to fit a packet perfectly into the natural 4096

depth of the URAM blocks.

To perform division during averaging, simple bit shifting is performed on every input, and

the averager is restricted to only allow averaging for power of 2 input packets between 1 and 64

inclusive. When data is sent to the DMA engine at the output, each 36-bit sample is truncated by

4 bits to form a 32-bit value.

The state machine diagram for the averager controller is shown in Figure 2.11.

2.12.1 Averager Performance on UAV Target Data

Figure 2.12 shows the effects of packet averaging using the same data setup as was used

to capture Figure 2.9 in the downsampling section. In these plots, however, rather than raw fabric

31



www.manaraa.com

FFT data, the plotted data is from the output of the averager which has also passed through the

correlator. The plot shows cell [1,1] of the correlation matrix which corresponds to the first channel

of FFT data being multiplied by its own complex conjugate, producing the real valued magnitude

of each bin for the first channel. Thus, these plots looks very similar to the raw FFT output for the

first channel shown in Figure 2.9.

Figure 2.12a shows a noise floor which is at about 20dB, while Figure 2.12b shows how

averaging 16 correlation packets reduces the noise floor by several dB, increasing the overall SNR.

Averaging improves the spectral estimation by reducing the impact of noise which is uncorrelated

with itself from packet to packet, while correlated signal power persists.

2.13 LATIS Radar Firmware (LRF) Controller

In order for the design to have the most consistent timing possible, a controller IP is nec-

essary which starts chirps and triggers memory transfers at regular intervals. The LRF Controller

fulfills this purpose with memory-mapped registers which allow the user to control a variety of

configurations at runtime, while at the same time abstracting away direct control over when pro-

cessing for a packet begins and ends. This section describes the timing features of this Controller

and gives an outline of its configurability features.

2.13.1 Chirp and Packet Capture Timing

One essential part of the LRF Controller is its ability to begin chirps which are evenly

spaced in time. This is one area where FPGAs excel because they can run processes continuously

with no interruption. In this design, we want the Controller to be started by the user and then

trigger chirps and data capturing in a free-running fashion. This was accomplished with the state

machine in Figure 2.13.

During normal operation, the state machine will stay in the RUNNING state where a free-

running counter (the PRI counter) defined by the user is continuously incrementing and looping to

zero. At counter == 0, the chirp signal is sent, when the counter reaches a user-defined delay value,

a packet is started and processing begins, and when the counter reaches a user-defined max value,

the counter is reset and starts again at 0. This counter only controls the beginning of a packet or
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(a) Loopback data averager output with 1 averaged packet (no averaging)

(b) Loopback data averager output with 16 averaged packets

Figure 2.12: Comparison of averager data with and without averaging enabled

chirp, after which hardware runs autonomously until completion, so it is up to the user to make

sure that the maximum and delay values will allow for complete processing of data as described in

the latency section of this chapter.

Note that the RUNNING state is only exited if the user turns off the state machine by de-

asserting the user run signal, or if the user changes a significant configuration which requires the

current packet to complete and all IP to return to the IDLE state. If not interrupted by the user,

packet and chirp timing will proceed consistently as defined by the counters and clock frequency.
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Figure 2.13: LRF Controller state machine

2.13.2 Memory-Mapped Register Space: Control and Status

To provide the user with maximum control over the DSP chain and the ability to monitor

it while it is running, a 32-register AXI4-Lite register space was used as a template for the LRF

Controller. These registers provide control buses to all IP which require some degree of run-

time configurability, and accept status buses which communicate to the user current status and

error reports. More information about how to communicate with the register space, and about the

control/status interface (CSI), is found in Chapter 5. For a description of all status and control

signals available to the user, see the LRF Controller pinout definitions in Appendix B.
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2.14 AXI DMA Engines

Three Xilinx DMA engines are integrated into the data path so that data can be observed

following the window, the FFT, and the averager. Each DMA is configured in direct register mode

with only the write channel enabled, and each is connected directly into the MPSoC processor

without passing through an interconnect IP. Though Vivado will naturally try to memory-map the

DMA engines into the processor, all DMA port mappings were manually excluded because the

DMA naturally has access to all RAM anyway and the processor doesn’t need to be aware of

where the DMA memory buses are mapped to.

In the LRF Controller, three modes exist: ADC mode, FFT mode, and full DSP mode.

The user can set the Controller to any of these three to enable DMA transfers from one of the

three access points. Additionally, as the DMA engines can be manually configured to send data

to different memory locations, a bit-accuracy mode is included which allows the user to request a

single packet. In the LRF Controller, this request will begin transfers in all three DMA engines,

saving data from each location as it reaches them during processing.

In the PetaLinux device tree discussed briefly in Chapter 4, each DMA is given a block of

reserved memory which is guaranteed to be unused by the kernel, and which corresponds to the

default destination addresses for each DMA engine per the DMA controllers. This memory is an

ideal place for ring buffers which can use the memory freely and store packets for long periods

without worry of data being lost. Ring buffers are discussed in the DMA controller section, and

for more information about the DMA engines themselves see the AXI DMA product guide [29].

2.14.1 DMA Transfer Throughput

Logic was added in the LRF Controller which counts the number of cycles between the

beginning and end of the averager DMA transfer (running in full DSP mode). In user space this

counter value can be read to verify the total time a transfer takes and calculate throughput. One

such observation produced a value of 131407 AXI cycles (running at 300MHz). Converting this

to time, we get 438µs, and then knowing that the averager sends a total of 2MB of data, we can

compute a throughput of 38.3Gb/s. Furthermore, the theoretical throughput can be calculated by

assuming that one 128-bit DMA word is transferred on every cycle, resulting in an ideal throughput
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of 38.4Gb/s. This puts our actual throughput only 0.25% below theoretical which indicates very

few wait states asserted by the DMA engine during a transfer. With this lower limit, as long as data

is being processed as continuously as possible, this DSP chain can achieve a PRF of almost 2kHz

as described in the latency section of this chapter.

2.15 AXI DMA Engine Controller

In order to make the DSP chain as tightly controlled and independent as possible, the fabric

DMA engines need to complete transfers immediately when there is data that needs to be sent. To

accomplish this, we created a DMA controller that communicates with the AXI4-Lite registers in

the AXI DMA engines (configured with S2MM ports in direct register mode) and handles various

runtime changes made to packets. The state machine in Figure 2.14 demonstrates the functionality

of this controller. For detailed information about the AXI4-Lite register space for the DMAs, see

the IP product guide [29].

The controller has a five primary goals. The first is to simply initialize the DMA engine and

then wait for a transfer, which it will begin by writing to the DMA length register when the start

signal is received. The second is to properly handle the interrupt signal when it is received by writ-

ing an IRQ reset bit to the status register when the IRQ output of the DMA (which is an input to this

controller IP) is asserted. The third is to enter the DISABLED state when DMA transfers are not

desired. This feature is used when a mode enables transfers from certain DMAs while prohibiting

transfers from others. This state allows the controller to ignore any start-transfer signals received

and prevent the DMA engine from beginning a transfer. The fourth goal is to allow the user to

manually rewrite the DMA destination address, which is done in the state machine by returning to

the WRITE DESTINATION ADDR state from the IDLE state when the new destination control

signal is asserted. The fifth and final goal is to establish a ring buffer configuration that sends every

packet to some multiple of a user-defined offset address, forming a contiguous set of packet “links”

starting at the destination address. This is to be done in real time and without user intervention once

the parameters have been set and the ring buffer started.

While the state machine shown in the figure was intentionally simplified to only show

major transitions, this simplicity fails to show transition priority out of the IDLE state, which is

to first disable the DMA if that is requested, second, to wait for the start of a transfer, or third,
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Figure 2.14: DMA controller state machine

to write a new destination address. Also note that from any state, if an error is received from the

DMA engine, the controller will enter a permanent ERROR state, which can only be overcome
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by performing a complete reset so that the DMA engine can be returned to a valid state as the

controller reinitializes.

The primary benefit of this IP, in contrast with the previous generation of radar FPGA

architecture, is that the data transfers are completely independent of user intervention. If the user

fails to collect the data from memory before the next transfer takes place, the data will be lost.

This means that proper monitoring of the interrupt registers (or DMA engine interrupt signals) is

the only way to guarantee data is not missed, and that proper configuration of the LRF Controller

is essential to ensure that the data can be moved in time for new packets to be processed without

packet corruption.

These automatic transfers are one of the most important elements of this IP and a great

achievement in this design. This controller is the key to packet regularity and consistent pulse

repetition interval (PRI) for accurate UAV Doppler processing.

2.16 AXIS Downsizer

As we have mentioned in a few of the previous sections, a downsizer IP was designed

to divide the correlation output in half and serialize the two halves one after the other for better

usage of the averager memories. This IP observes the AXI4-Stream protocol’s standard handshake

signals [27] and can be configured to accept an input word of a user-defined size on one cycle and

divide it evenly into serial words at the output on the subsequent N cycles.

In our DSP chain, the ratio of input to output words is simply 1:2, so every word taken on

the input is clocked out serially on two cycles, with the part associated with the LSB exiting first.

2.17 AXIS Switch

In order for the DSP chain to support shared control between DMA engines and down-

stream IP, a switch IP was designed which allows for both explicit switching between DMA and

downstream control, and automatic shared control between both streams. Explicit switching is

necessary in most modes when the DMA is on and the downstream IP is off, or the downstream is

on and the DMA is off. Shared control is essential when all DMAs are enabled and data must be

sent to the DMA engine and downstream simultaneously.
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This IP is designed as a large, zero-latency mux with some minor additional control logic

to support shared control and clean mode switching, and uses the AXI4-Stream protocol with

standard handshake signals [27].

2.18 Clock Domain Crossing Buffers

As described in the shift register section, the incoming data from the ADCs is arriving at

somewhere between 10MHz and 40MHz, while the rest of the DSP chain is running at 300MHz.

To synchronize the data path, Xilinx provides the AXI4-Stream Clock Converter IP [18] which we

placed after the window function and before the FIR Compiler so that the Compiler could benefit

from the low-to-high clock rate ratio. To synchronize control logic, buffer circuits were added

throughout the design where signals crossed clock domains. The LRF Controller, for example,

which runs on the AXI clock, generates the start signal for the window function running on the

ADC clock—buffering this signal requires a brief handshake to guarantee that the start signal has

been registered on the slow clock before it is deasserted by the LRF Controller.

This sort of custom synchronizer circuitry ranges from status monitoring in the window

function, to starting a packet of data capturing, to conditioning IO before use in the fabric. All of

this logic follows good design principles for minimizing metastability (by using multiple synchro-

nization registers) and ensuring that data is carried correctly across domains (using handshakes).

Furthermore, false path and clock group constraints were added in the XDC to signal to Vivado

that such crossings are managed by the user and should not be considered as critical paths.
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CHAPTER 3. RESOURCE AND TIMING SOLUTIONS FOR HIGH-UTILIZATION
DSP DESIGN

3.1 Introduction

In order to implement the desired size of processing and control logic present in the design,

a large quantity of FPGA resources is required. After reviewing various system on a chip (SoC)

options, we selected UltraZed-EV MPSoC produced by Xilinx and Avnet. This device combines

a quad-core ARM Cortex-A53 MPCore processor with large UltraScale+ FPGA fabric space, in-

cluding 38Mb of BRAM and URAM memories, 1728 DSP slices and about 500k logic cells and

flip-flops, with a max attainable memory interface frequency of 333MHz and plenty of high-speed

IO. Luke Newmeyer’s first generation processing chain, which targeted the MicroZed 7010 SOM,

contained a fraction of these resources, and would not allow us to build the desired 16 parallel

channels. In Newmeyer’s words, “future work, will likely require sensing in 3D. This would re-

quire the development of a 2D phased array radar. The computation required for a 2D phased array

is significantly more complex and intensive than that of a linear phased array. An increase in the

number of radar channels results in a quadratic increase in computation. A future radar system will

most likely have a 4 by 4 array of elements totaling to 16 channels. Significantly more processing

hardware would be required to implement” [1]. The UltraZed-EV MPSoC supplies this additional

processing hardware and allows us to achieve 3D sensing with a 2D phased array radar.

Naturally, with a design so large, and with a hope to run it near the upper frequency limit

of 333MHz, it is important to follow good design practices and carefully set up timing constraints

in order to meet timing. This chapter discusses solutions for ensuring that timing is met in spite

of high-utilization and congestion in our design, and ensuring that it will have the best chances for

meeting timing if changes are made later on.

To underline why this is necessary, we draw from Chapter 2 which explains the core fea-

tures of the DSP chain, including spectral estimation and cross-correlation, and various signal
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conditioning operations for better target estimation. With an endless supply of potential opera-

tions, there is a delicate balance between adding more features and the ability of the design to

support a feature’s increase in resources and routing tracks. While more features may be helpful,

they come at a cost in fabric with limited resources.

In our current design, which uses a significant amount of many resources and whose con-

gestion level is consistently 6 (ranging from 5 to 7), routing is most often “difficult” according to

the Vivado Design Methodology Guide [30]. This difficulty results in increased net delay from

poor implementation quality (poor QoR), which can in turn decrease the maximum allowable fre-

quency at which the design can be run. In order to meet a target pulse repetition frequency (PRF)

of 2kHz, we require a low-latency design running at as high a frequency as possible.

In other words, we want the design to have lots of computation logic and we want it to be

fast, putting the design in a tight spot for meeting all requirements. As the result of the timing

analysis discussed in this chapter, we were able to accomplish both, running at 90% of the max

allowable memory bus frequency (at 300MHz) with significant digital processing on impressively

wide data bus widths, managing good quality of target estimation with a fast, real-time chirp rep-

etition frequency. This is good news for UAV traffic management, improving Doppler estimation,

UAV tracking, and quality of DAA algorithm postprocessing results.

Many strategies found here were collected from online solutions in Xilinx forums and

answer records, as well as from Xilinx documentation (primarily [30] [31] [32], though others are

listed throughout the chapter).

3.2 Resource Usage

Because the correlation matrix scales according to the square of the number of channels,

the number of DSP slices and memory blocks increases dramatically when transitioning from a

4-channel radar to 16 channels. Furthermore, this second generation design gains mean subtrac-

tion, windowing, FIR filtering, and decimation, plus two more DMA engines and extensive control

logic throughout the design, which greatly increases its resources in contrast with the first gen-

eration design. To visualize this comparison, Table 3.1 shows the approximate resource usage of

both generations side by side, including the percent increase. Resources are said to be approxi-

mate because different implementation strategies produce different resource usage, and we often
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Figure 3.1: Percent utilization of resources on the UltraZed-EV FPGA

ran multiple strategies and used the result with the best timing. Figure 3.1 depicts the percent

utilization of the second generation design relative to the available resources on the UltraZed-EV

FPGA fabric.

As both the table and figure show, a new resource is available in this design called URAM

(UltraRAM) [28]. These RAM are dedicated FPGA memories that are less configurable than

traditional BRAM, but are larger per block and can contain all of the averager data for the 16

channel design. This allows the design to maintain large, static memory storage with URAM

blocks and smaller, more dynamic memory in other IPs with BRAM blocks.

Table 3.1: Resource comparison between first
and second generation FPGA designs

Resources Gen 1 Gen 2 Increase
LUTs 6335 63830 908 %
LUTRAM 475 9355 1869 %
Flip Flops 7741 164319 2023 %
BRAMs 56.5 112.5 100 %
URAMs 0 64 —
DSP Slices 66 1019 1444 %
IO 37 54 46 %
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3.3 Timing Closure

To provide some context, FPGA clocks frequencies normally fall between 100–500MHz,

and some IP, such as the AXI DMA engine provided by Xilinx, aren’t designed to operate above

a given frequency (333MHz in the DMA case). With this in mind, trying to run our design at

300MHz required careful planning to achieve timing closure. This planning involves reducing re-

sources, pipeline registers to reduce delay between computation elements, reduced signal fanout

to reduce total delay of signals driving the fanout, improved logic placement to offer better routing

and reduce net delay, reduced congestion to improve routing and reduce net delay, and other opti-

mizations such as register retiming. Several of these approaches are discussed here in the context

of this design.

3.3.1 Resource Reduction and Sharing

The first and most obvious solution to improve design timing is to use fewer resources. Just

as with software, hardware can be designed in many ways and proper attention can lead to smaller

and faster designs that accomplish the same objective as an equivalent larger and slower design.

As timing became tighter with the addition of more processing IP, we began to ask the ques-

tion of what resources could be reused, shared, or removed altogether, which led to optimizations

such as the following:

1. By raising the AXI processing clock frequency, the FIR Compiler can make use of the slow-

to-fast clock frequency ratio to reduce resources. We exploit this feature by placing the clock

converter before the FIR Compiler and guaranteeing that the slow clock frequency will have

a max of 40MHz and that the fast clock will be fixed at 300MHz, reducing DSP resources

by a factor of 7 (the floor of 300/40).

2. In the averager section of Chapter 2, we discussed how correlation data was serialized to

twice the depth at half the width. This allowed us to reduce the number of routing resources

required at the output of the averager by half while also using fewer total RAMs at no cost to

throughput. It was this change that allowed us to convert from 16 bit averager output words

to 32 and still meet timing with 256 total channels.
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3. Careful planning of the mean subtraction block allowed us to infer a single DSP48 primitive

for each channel’s mean estimation. This IP came last in the design, and caused minimal

damage to timing as it runs on the slower clock and uses few resources and logic. “Careful

planning” in this case meant precise observation of all bit widths to guarantee mean estima-

tion would fit within a single DSP48, and an iterative implementation approach to ensure

that inference led to exactly the right resource usage and configuration, including internal

pipeline registers.

While some IP can be optimized for minimal resource usage at little cost, others are hard

to reduce such as the FFT and correlator, where reducing resources costs a significant increase of

latency or complexity. Thus the final design balances some IP which are optimized for resources

where routing and timing are most critical, while others are optimized for latency where an increase

in resources is possible without significant damage to timing.

3.3.2 Pipeline Registers

One of the most important tenants of good HDL design is the use of evenly (and at times

frequently) spaced registers which break up long chains of logic and allow for a faster clock fre-

quency at the cost of higher latency. Because registers define the beginning and end of a timing

path, the delay between two registers decides how quickly clock edges can reach them and main-

tain valid data. The more logic there is between the registers, the longer the propagation time, and

the slower the maximum clock frequency. Adding pipeline registers between logic reduces this

delay, and therefore increases the maximum possible frequency.

As all data-path IP in the design were built to be size-configurable, (i.e. a variable number

of parallel channels, data width, data length, etc.) the full DSP chain was first implemented with

just two channels to ensure proper functionality and make sure that timing would be met for a

small design. When this was completed, the design parameters were updated to generate the full

16 channels, and because it was difficult to predict how IP resources were going to be placed and

routed in the context of a larger design, implementation immediately revealed many timing issues,

huge negative slack between registers, and failed routing.
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Upon observation, the Vivado timing report showed that many failures were caused by large

delays between registers, such as those used for multiplexers on data lines (in the averager), as well

as shift and arithmetic operations on data lines (in the window function). In many cases, control

signals caused a variety of timing issues because one consequence of more parallel channels is an

increase in data bus width, putting more strain on control signals which must reach hundreds or

thousands of registers. If these high-fanout control signals must first traverse logic before reaching

destination registers, timing may be very difficult.

To attack these timing issues, each IP with failing paths was revisited and registers were

added between long chains of logic, as well as at the inputs and outputs of various IP. This improved

timing significantly, eliminating failed endpoints and critical paths altogether in many cases.

Adding pipeline registers is fairly straightforward when no handshake or control logic sig-

nals are present as free-running registers can be added to the data path. When control logic is

present, such as when state machines control the loading and unloading of data from memories, or

when multiple parallel arithmetic paths are being performed for optional configurations, registers

must be added very carefully to ensure that the control system still moves data with respect to the

correct latency.

Later in the design process, as timing began to fail between IP, AXI4-Stream and AXI4

(memory-mapped) register blocks were added between IP to isolate timing issues of connected IP.

While some of these registers were used for testing and then removed, others remain, such as those

on the output of the DMA engines which buffer the S2MM data paths before they enter the MPSoC

memory ports.

3.3.3 Fanout Reduction

Following the addition of pipeline registers, another optimization we performed was to

limit the fanout of control signals. Fanout is defined as the number of destinations that a single

source must reach. The problem with high-fanout nets is that a single signal is used to drive

endpoints in many different places, sometimes spanning multiple clock regions in the fabric, or

at least multiple CLBs. This often means that timing can’t be met for all endpoints because it is

impossible for them to be sufficiently close to the driving source.
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The best example of this is in the averager, where a MUX was used to select between seven

different shifted versions of the 10240-bit wide input bus using a three bit select signal.1 This is

shown in the following code block (widths have been removed for better visibility):

1 with avg_frames select

2 s_tdata_z1_div (...) <=

3 std_logic_vector(shift_right(signed(s_tdata_z1 (...) ,1)) when "001",

4 std_logic_vector(shift_right(signed(s_tdata_z1 (...) ,2)) when "010",

5 std_logic_vector(shift_right(signed(s_tdata_z1 (...) ,3)) when "011",

6 std_logic_vector(shift_right(signed(s_tdata_z1 (...) ,4)) when "100",

7 std_logic_vector(shift_right(signed(s_tdata_z1 (...) ,5)) when "101",

8 std_logic_vector(shift_right(signed(s_tdata_z1 (...) ,6)) when "110",

9 s_tdata_z1 (...) when others;

In this case, the three bits of the avg frames signal select between different versions of the

input s tdata z1 bus which is shifted right on a channel-by-channel basis.

Even when the avg frames, s tdata z1 div, and s tdata z1 signals are all registered, each bit

of avg frames still has to spread to thousands of LUTs and 2-bit MUXs across the fabric and settle

at each data register before the next clock edge. Thus, there is no good central location to place the

avg frames registers which will make it easy to reach every data register and still meet timing.

Obviously pipelining can’t help to move the sources closer to their destinations, but if there

are many copies of the source registers, they can all be places closer to a subset of the destination

registers and improve timing for each group. In Vivado, adding the MAX FANOUT attribute to

the avg frames register restricts the number of endpoints that a single source can drive, telling the

tools that if more than the maximum number are needed, it should replicate the source so that the

signal can be placed closer to the endpoints. This is shown in the following lines of code.

1 attribute MAX_FANOUT : integer;

2 signal avg_frames : std_logic_vector (2 downto 0);

3 attribute MAX_FANOUT of avg_frames : signal is 64;

With this attribute, the avg frames register bits are only allowed to drive 64 endpoints. The

avg frames registers are replicated as many times as needed to meet this requirement and can all

1This width corresponds to the data path before packets were interleaved and the averager width was cut in half.

46



www.manaraa.com

be places closer to the 64 endpoints they communicate with. Thus, timing can be improved with

minimal additional complexity and latency.

One thing to note is that the avg frames registers themselves are all driven by some other

logic in the design, and thus replicating these registers will increase the fanout of the signal driving

them. This new fanout can be restricted as well if needed, forming a sort of register tree which

grows out in increments. Such an approach increases resources in a logarithmic fashion, but does

not increase latency.

When synthesis was run with the MAX FANOUT attribute included, Vivado performed

replication as described in the following log report:

1 INFO: [Synth 8 -4618] Found max_fanout attribute set to 64 on net

avg_frames [0]. Fanout reduced from 11270 to 64 by creating 176 replicas

2 INFO: [Synth 8 -4618] Found max_fanout attribute set to 64 on net

avg_frames [1]. Fanout reduced from 11270 to 64 by creating 176 replicas

3 INFO: [Synth 8 -4618] Found max_fanout attribute set to 64 on net

avg_frames [2]. Fanout reduced from 5894 to 64 by creating 92 replicas

One important note about the MAX FANOUT attribute is that it has limitations when the

signal crosses hierarchy boundaries [33]. If the attribute is applied to a signal which exits it’s

module and fans out to drive loads in another module, the attribute will likely not be applied

because its application is only observed within the scope of its own module. Some techniques of

hierarchy flattening may help this, but often require redesigning the HDL or additional effort in the

Vivado tools.

3.3.4 Control Logic Reduction

Control signals, such as set, reset, and enable signals, are often timing critical—both in the

sense that they are likely to form part of a critical path and that their timing is essential for proper

behavior. Synthesis and implementation tools will prioritize control signal routing and try to give

them the best routing tracks, which in turn causes other paths, such as data or state machine logic,

to be given lower routing priority. Such prioritizing makes sense but is often unnecessary, and

control signals can often be consolidated or removed to improve timing and reduce congestion in

critical areas.
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As we have mentioned in the previous sections, this design contains many wide, parallel

data paths propagating through the FPGA fabric. Initially, all data pipeline registers were con-

nected with the same control logic as other signals, frequently resetting them with the rest of the

registers in the IP. Such resetting added thousands of high-priority routing tracks to the design

which in turn contributed to increased congestion and poor critical paths. During the development

phase of most IP, it seemed as though resetting was important for proper cleaning of the data path,

but we realized that most of our data path registers are cleared out naturally after a few cycles,

making the reset basically redundant if the first few cycles of data are ignored. Because our radar

application doesn’t care if the first few startup packets are meaningless, leaving register resets

disconnected causes no damage during operation. Removing the reset signal from these pipeline

registers allowed register reset ports to be routed directly to ground via whatever routing tracks

were lowest priority, freeing up the critical tracks for use by other critical paths.

Making this adjustment didn’t resolve all timing issues, but it was noted that several tens

of picoseconds could be gained during implementation. Reducing control logic should at least

produce slight improvement because of what we have discussed here, though large improvement is

unlikely in designs like ours where the original reset tree was still quite small compared to the size

of the data buses. Additionally, as routing tracks are still needed to tie resets to ground, the overall

routing resources might only improve slightly, and the primary benefit comes from a change in

routing priority.

3.3.5 Placement Constraints

For IP which can’t be modified, such as those offered by Xilinx, and IP which still have

difficulty meeting timing in spite of good design practices, Vivado provides a constraint called a

pblock, which allows the designer to easily group cells that they want to be placed near to one

another. The following averager pblock constraints illustrate this:

1 create_pblock pblock_avg;

2 add_cells_to_pblock [get_pblocks pblock_avg] [get_cells -quiet [list

design_1_i/axis_averager_0 ]];

These lines create the pblock called pblock avg and then add to it the design cell called

axis averager 0, a cell which includes the complete averager IP and its internal hierarchy. Op-
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tionally, pblocks can be constrained to one or more clock regions in the FPGA fabric, but this is

less effective for large cells and can be difficult to implement successfully due to more restricted

routing, though it can be helpful when working with partial reconfiguration and small cells for

which precise association with a clock is needed. Pblocks with no clock region constraints provide

softer suggestions to the implementation tools so that the tools can physically group them as best

as possible. With or without clock region constraints, pblocks can help reduce net delay on critical

paths. In our design, only the shift register was given a pblock constraint limited to certain clock

regions because the net delay from natural routing was large enough to prevent the design from

meeting timing regardless of input delay constraints. Forcing the shift register to be in the same

clock regions as the IO pins reduced the net delay by half and brought the design within range of

valid timing closure.

Pblock constraints without clock region restrictions were created for the averager and cor-

relator (as they use resources which will likely be placed all across the fabric by default), as well as

for the DMA engines which have long unregistered logic chains. Other IP were also given pblocks

of their own or included in preexisting pblocks when critical paths could not be otherwise reduced.

3.3.6 Routing Congestion and Net Delay Improvement

Congestion in our design has been one of the largest obstacles for timing. The Vivado

timing rating in most of our placed designs is between 5 and 7, which can quickly impact successful

routing and timing closure (both of which did fail in many cases). The most common ratings, 5

and 6, signify that there exist 32x32 or 64x64 areas (respectively) of tiles which have over 100%

of their routing resources used [34]. When routing tracks in critical regions are being completely

utilized, some nets are forced to take longer, sub-optimal paths which worsens net delay at best, or

prevents routing altogether at worst. Figure 3.2 shows the congestion density map for one of our

implemented designs, red and orange indicating the highest congestion.

Net delay can be a significant timing issue when a design is large or has high congestion.

The problem is that when elements are routed via long tracks and must traverse between clock

regions and multiple logic tiles, the delay of propagation between two registered points can take

nearly all (say, >80%) of the total path delay. One such example of this is shown in Figure 3.3.

Notice that the net passes directly from the output of one register to the input of another with no
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Figure 3.2: Vivado congestion density map overlayed on routing

Figure 3.3: Long net delay timing report example

additional logic in between, and that the net delay is 3.043 ns. Per the critical path summary,

the net alone takes up 96.8% of the total path delay, clock-to-Q of the first register taking up the

remainder of the delay. This net delay alone limits the maximum frequency to 330MHz, and that

doesn’t even allow for additional logic between registers.

Resolving net delay is challenging. Vivado provides some implementation strategies that

focus on logic spreading to reduce congestion, and pipeline registers may help so that the net itself

can be broken up, but net delay is different from logic delay in that it largely depends on the result

of the place and routing algorithms, which can change from run to run as the design changes.

Using pblocks as discussed in the previous section may help to reduce net delay by preventing
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nets from crossing clock regions or at least by placing cells closer together, though the benefit of

this may be lost for larger cells. Additionally, Xilinx provides some specific tool-based guidance

to improve congestion and net delay [31]. Ultimately, we experimented with a variety of Vivado

implementation strategies which proved to be the best solution to resolve net delay and achieve

timing closure when all other design improvements were exhausted.

3.3.7 Fixed Placement and Routing

One unique challenge with FPGA design is that placement and routing of individual IP

during their development can be much different than when they are integrated into a large project.

During the design process, timing can be analyzed, IO constrained, clock definitions added, and

good HDL practices used, but there is always some degree of unknown variability in how integrated

designs will be organized in the fabric, especially as the designs grow larger. This means that while

placement, routing, and timing analysis for individual IP may be insightful, timing-critical paths

may benefit from manual placement and routing constraints if timing cannot be met when a de-

sign is implemented. Adding these constraints can help to guarantee timing results of constrained

cells by not allowing the tools to move them around during implementation. Vivado allows such

constraints, and generates them itself during implementation, but creating them manually can be

very difficult because each constraint requires knowledge of which HDL cell is to be tied to which

precise resource of the fabric. This is infeasible in most designs, as even small circuits can use

hundreds of resources, so using Vivado to generate a set of good constraints that can be copied and

used elsewhere is a better place to start.

This strategy was used in the shift register of this design (discussed in Chapter 2) which has

very tight timing margins that consistently failed timing when implementation was run. When the

shift register was implemented alone, placement and routing were obviously satisfactory (registers

and logic were placed close IO ports) and produced good timing margins, but when integrated into

the complete design, register placement was significantly spread out across the fabric. Because

we wanted to maintain the shift register’s standalone timing when it was ported into the complete

design, we exported and saved the constraints generated during place and route of the standalone

project to a separate XDC file. This XDC file was added to the constraints of the integrated project
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so that when implementation was run, every element in the shift register would be given the same

good placement that it had been assigned when it was not competing with other IP.

Figure 3.4a shows the implemented timing results of the standalone shift register design

while Figures 3.4c and 3.4b show the difference between runs of the large design, one without

manual place and route and one with it. In all three images, keep in mind that the inter-clock path

between virt bit clk and bit clk is actually an intra-clock path because both of these clocks are

timed together. Functionally, all intra-clock paths are internal to the fabric, while the inter-clock

virt bit clk-to-bit clk path demonstrates the transition from data outside to inside of the fabric at

the IO ports.

Notice how all intra-clock setup timing (the WNS column) in Figure 3.4c is much better

with manual place and route than in Figure 3.4b without them, but that the inter-clock setup timing

is slightly worse. Also, inter-clock hold timing (the WHS column) is significantly better with

manual place and route, while intra-clock hold timing is nearly the same. Then, notice how the

inter-clock path timing of the standalone design in 3.4a is very close to that of the inter-clock path

of manual place and route of the full design in 3.4c. To summarize all of these comparisons, using

manual place and route constraints improved timing of the shift register by forcing cells and nets

to be located where they were in a more optimal design, and also enabled the IO timing in the full

design to match the optimal design, (even though setup timing ended up being slightly worse).

At any rate, some variation between the implementation of individual IP and implementa-

tion of the integrated design is inevitable. However, using a manual place and route approach for

the shift register has consistently produced the best results out of many implementation strategies,

meeting timing by the best margins, especially with regard to hold time at the IO.

For more information about manual placement and routing techniques, see the Vivado im-

plementation user guide [35].

3.3.8 Synthesis and Implementation Strategies

One final method to achieve timing improvements is to modify the synthesis and imple-

mentation strategies in Vivado. While the available options are endless, the following lists show a

few of the changes we made to synthesis and implementation strategies. Note that these strategy

modifications are not at all exhaustive, they are just options that were tried to improve timing.
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(a) Shift register timing report—standalone shift register

(b) Shift register timing report—full design, no manual place and route

(c) Shift register timing report—full design with manual place and route

Figure 3.4: Comparison of shift register timing reports with and without manual place and route
constraints
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In general, optimizations attempt to improve timing by spreading resource placement, balancing

registers, replicating and grouping logic, and rerouting nets.

It is difficult to know what each synthesis or implementation option really does because

the Xilinx documentation is sparse and algorithms are private, but our practice with the tools has

shown some noticeable alteration in the final results in accordance with what the optimizations

selected by the user proclaim to do. Some of this is obvious, like no LUT combining and limiting

the fanout, as both of these increase the final number of logic and register resources used, while

other optimizations are more subtle and difficult to verify, especially when they are treated as

suggestions and might be ignored by the tools. The same goes for implementation attributes,

which more directly affect timing results.

In general, it is best practice to use very small designs to test the behavior of a specific

attribute and make sure that the results are as expected, though we found relatively good success

by taking a more “educated brute force” approach and running 7 or 8 different implementation

runs at the same time and observing which ones produce the best results.

Each item in the following lists corresponds with a specific optimization tag added to the

synthesis or implementation TCL commands e.g. “-directive” and “-retiming”. These tags focus

the tool’s efforts on optimizing for specific outcomes as described by their attribute written in

italics.

Synthesis [36]

In HDL design, the synthesis process validates the hardware and prepares a netlist for

implementation. During this step, resources are gathered and timing is estimated in reference to

the board being targeted, and the logic in the design is effectually built out as a complete RTL block

diagram. Because all of the resources are reviewed and the netlist is fully compiled in this step,

Vivado allows the user to request the methodology and basic limitations for what the synthesis

tools will look for and allow.

In our search for better timing, we tried many different synthesis options, of which the

following were found to be helpful most consistently:
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1. -directive AlternateRoutability—This directive is recommended in various forums and Xil-

inx answer posts as a way to help with high congestion and improve timing [34]. The Xilinx

documentation about this strategy simply says, “set of algorithms to improve route-ability.”

This directive was used for the top level synthesis strategy as well as the synthesis strategy

for many IP which had difficulty meeting timing in the implemented design.

2. -retiming <on/off>—This flag seeks to improve timing by balancing existing registers across

chains of logic, and was added to synthesis for various Xilinx IP which have large logic trees

with the hope that register balancing might improve critical paths.

3. -fanout limit <value>—This integer value sets a fanout limit for the entire IP or project, for

the same purpose as the MAX FANOUT attribute but on a more global scale. In contrast

with the attribute, this acts more as a suggestion to the tools, and may be ignored (such as

for control signals). We applied this optimization to the synthesis runs of various individual

IP (particularly those by Xilinx) when nets with a large fanout failed timing.

We found that the best global synthesis strategy disabled LUT combining and used the Al-

ternateRoutability directive. For the synthesis of many individual IP, the fanout limit was reduced

from 10000 (the default) to around 32 or 64 when an IP’s high-fanout nets failed timing, and the

retiming attribute was often enabled. Occasionally, the shreg min size attribute was increased, as

some sources say that increasing it slightly may help to better package registers, though this was

more difficult to verify.

Implementation [35]

The implementation step of HDL development takes the resources and netlist provided by

synthesis and goes through the process of optimizing logic, placing resources in the fabric, and

then routing those resources together.

Implementation strategies, like synthesis strategies, were found to improve timing in some

cases and make it worse in others, but in all cases it was equally difficult to know exactly why

changes helped or did not. After trying many various directive combinations, we settled on a few

that worked consistently well, from which this list was compiled.
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1. Place Design

(a) -directive AltSpreadLogic high—This directive is the strongest directive of logic spread-

ing available, which can improve congestion by moving logic further apart.

(b) -directive ExtraNetDelay low—This directive runs placement with more pessimistic

delays associated with high fanout and long distance nets in an attempt to reduce net

delay of critical paths.

(c) -directive ExtraNetDelay high—This functions just as the previous directive but is

more pessimistic with delays.

(d) -directive ExtraPostPlacementOpt—In Xilinx documentation, this directive simply states,

“higher placer effort in post-placement optimization,” which sounds nice so we tried it

in some implementations.

(e) -directive ExtraTimingOpt—This directive runs placement with a more timing-driven

focus.

2. Post-Place Phys Opt Design

(a) -directive AlternateFlowWithRetiming—This directive is more aggressive with register

balancing, replication, and optimization.

(b) -directive AggressiveExplore—This is the default directive for some pre-defined imple-

mentation strategies. It runs a variety of optimizations (see documentation [35]).

(c) -directive AlternateReplication—This directive is more aggressive with cell replication

on critical paths.

(d) -directive AggressiveFanoutOpt—This directive is more aggressive with fanout reduc-

tion on critical paths.

3. Route Design

(a) -directive MoreGlobalIterations—This directive runs more timing iterations to improve

timing and uses more detailed analysis during all of routing.

(b) -directive HigherDelayCost—This directive emphasizes delay optimization at the cost

of fewer iterations.
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(c) -directive NoTimingRelaxation—This directive doesn’t allow the router to relax timing

constraints to meet timing, thus forcing it to try harder to meet timing at the original

constraints.

(d) -directive Explore—This directive tells the tools to try different critical path placement

after an initial routing.

Variation Between Vivado Implementations

In later implementation runs we have noticed that Vivado doesn’t always produce bit-

streams that behave the same way. From this, we have learned that poor design strategy may lead

the tools to make poor assumptions about logic and produce invalid retiming and logic reduction

as described here.

The correlation block in our DSP architecture creates a massive fanout for the tready hand-

shake signal if it is left unregistered. The bus width after correlation is nearly 10000 registers wide

and 10 deep, and includes about 400 DSP slices. Originally, we replicated the AXIS complex

multiplier for each multiply, resulting in 128 replications of the AXI4-Stream protocol as well,

which created excessive control logic that needed to be reduced to provide the single interface

control handshake. To handle this, we tried using “and” and “or” reduction of all tvalid signals

produced by each complex multiplier, but this produced too much additional logic to consistently

meet timing and was difficult to pipeline. To improve timing, we decided to use the handshake

for a single multiplier (corresponding to the LSB of the data bus) to connect with the module in-

terface, and then connect all of the tvalids together to create an error signal which was asserted

if the handshakes were ever asynchronous (though by design they shouldn’t be). It was after this

change that we began to notice different Vivado implementation strategies producing different re-

sults, and small, unrelated changes to design logic began to produce bitstreams with unpredictable

functionality. The curious thing was that running the same design through various implementa-

tion strategies began to produce different bitstream behavior: sometimes bitstreams would report

synchronization issues in the correlator but they would still function correctly, other bitstreams

would hang when trying to produce averager data and would produce averager and correlator er-
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rors, others still would seem to work, with or without errors, but would produce data that was

incorrect.

This kind of unpredictability in a design, especially dependent upon synthesis tool output,

is unacceptable. To resolve such issues, the best approach is to code HDL that can confidently

withstand tool optimizations. This means it is unwise to use control signals which are not uniform

across all logic they apply to, or to include modules with unnecessary logic that you assume will

be left alone or modified by the tools in a particular way. Our reworking of the correlator involved

using the raw complex multiplier template provided in Vivado which ended up significantly re-

ducing LUTs and flip flops, as well as a few DSPs. This multiplier was replicated in the same

fashion as the original AXIS multipliers, but now single handshake signals were connected to all

registers of the design, and a skid buffer was added so that the tready signal could be registered

for isolation and replicated to reduce fanout. In current runs, timing has continued to be tight, but

implementation results have been consistent and without error assertion in bitstream logic.

In short, it is wise to code with as little ambiguity as possible to leave minimal room for

the tools to assume the designer’s intentions.
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CHAPTER 4. INTEGRATED PLATFORM MANAGEMENT WITH PETALINUX

4.1 Introduction

In order to best integrate fabric preprocessing and target estimation postprocessing into the

complete UAV traffic management system, we use the PetaLinux kernel [37] as a central manage-

ment unit to tie everything together into a single user space. This way we can support the hardware

configuration options of the HDL design from software and benefit from various operating system

utilities such as the rootfs for local storage of postprocessing executables and dependencies, the

FPGA manager for reloading bitstreams on the fly, and straightforward access of peripheral de-

vices such as Ethernet and USB. The Ethernet connection specifically is used to send data packets

and completed target estimates to platforms running DAA algorithms, as well as for remote access

to processes running on the board.

Beyond the conveniences it provides, using the PetaLinux kernel isn’t inherently essential

to our UAV LATIS research, nor does it enable any significantly new functionality in such a system.

However, as it has come to be an integral link between FPGA fabric and software, it is included

here as a knowledge contribution for those who work with similar systems and may benefit from a

proven starting point. For this reason, the information included is rather brief, though an extensive

tutorial explaining the steps to configure and build kernel images is included in Appendix C. This

appendix also provides the full device tree used to build the images.

Each section in this chapter touches on a key element of building and booting the kernel

images in the same fashion that we use in our design. This includes such things as booting from

the SD card, configuring the image, and building the device tree.
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4.2 Booting from an SD Card

A coworker on this project, Mick Gardner, designed a carrier card for the UltraZed-EV

board which contains ports for USB, Ethernet, and an SD card which are not present natively on

the UltraZed. Without such a carrier card, only the local RAMs and flash chips could be used for

software storage and development, and very minimal IO interfacing would be available, none of

which is sufficient for our purposes.

With the added SD card port, the MPSoC block in Vivado can be configured to support an

SD card driver and boot an image from SD memory, providing large, local, long-term storage. To

boot PetaLinux from this memory, we followed the following steps:

1. Change the UltraZed’s boot mode switches to on-off-on-off. These switches configure a

hard-wired boot mode that the board will use to search for and load a kernel image.

2. Configure the PetaLinux project (in the main configuration menu) to boot from the SD de-

vice, and then change the boot device to mmcblk1p2 (default is 0p2).

3. Update the SD device node in the device tree to disable write protect and be sure that the

node itself is enabled.

4. Build the image and package the associated BOOT.BIN.

5. Properly format the SD card into boot (FAT32) and rootfs (EXT4) partitions according to

the PetaLinux documentation [37], and copy the images and rootfs to their proper partitions.

6. To ensure proper booting, listen on the USB port of the UltraZed to watch the boot messages

when the board is powered on.

A properly booted kernel on the SD card will appear the same as the default flash images,

but will allow files to be read and written from SD memory which persists when the board is

powered off.

4.3 Including HDL Devices in the Device Tree

Because the PetaLinux tools are developed by Xilinx, one major benefit is that they can

automatically import a Vivado hardware description file (HDF or XSA) and load fabric devices
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into autogenerated device trees. This is especially helpful (and important) when the fabric contains

memory-mapped devices that communicate with the processor, as the processor needs to know that

devices exist and what their addresses are. To import an HDF or XSA into PetaLinux, we followed

the following steps:

1. In Vivado, export the HDF or XSA file (including the bitstream if desired) after successfully

implementing a design.

2. Create a new PetaLinux project using the zynqMP template and then run the configuration

command pointing to the hardware file as shown in the following two lines:

1 $ petalinux -create --type project --template zynqMP --name

my_petalinux

2 $ petalinux -config --get -hw -description=<path -to -hdf -directory >

3. Configure and build the images. Notice that the pl.dtsi device tree file which is autogenerated

will contain information about the memory-mapped devices from the hardware design.

If custom drivers have been designed, or changes must be made to existing devices, they

can be included in the system-user.dtsi file which is created by the tools for user changes. In this

file we added and changed several nodes according to the project’s needs; this is described in the

next section.

4.4 Device Tree Modifications and Peripheral Devices

As the project has developed, new peripheral devices have been added which require mod-

ifications to the device tree. One such example is the use of processor SPI engines, of which our

project uses three: two to program the ADC chips, and one to program the chirp PLL. Including

these in the image build requires the following steps:

1. Include and constrain the appropriate SPI signals in the processor block of the Vivado

project. In our case, this meant all three SPI engines of the SPI0 device, the IO of which

were connected to the FPGA ports that are routed to the correct devices on the carrier card.
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2. Add three SPI nodes to the device tree. See the device tree in Appendix C for what these

nodes look like. Important in this step is to ensure that the num-cs attribute was three, and

that the is-decoded attribute is not present.

3. In the kernel configuration menu enable user-space control of the SPI engines by enabling

the SPIDEV attribute. This can be done by searching for “spidev” and then enabling it as

“built-in”.

4. After building the images and booting, the SPI devices can be accessed from where they are

mounted in the /dev/ folder.

In general, the syntax for device nodes can be difficult to get just right, but if syntax is done

correctly, adding and changing nodes is fairly straightforward. Preexisting nodes can be modified

by referring to them from the system-user.dtsi file using the ‘&’ symbol, and new nodes can be

added by giving them a unique name and populating the required fields (names which are already

used will cause new the nodes to overwrite the existing ones). The only wholly new node that we

added to the device tree is described in the next section.

4.5 Reserved Memory

Of the few configurations discussed here, this is the most optional, but is still recommended

because it guarantees memory for the DMA engines which will not be inadvertently overwritten

by kernel processes. This is done by simply adding a reserved memory block in the root node (the

node denoted by “/{};”) of the device tree as shown in the following lines (which are the same as

those in Appendix C):

1 reserved -memory {

2 #address -cells = <2>;

3 #size -cells = <2>;

4 ranges;

5

6 dma_mem_0: dma_mem@0x0F000000 {

7 reg = <0x0 0x0F000000 0x0 0x01000000 >; /* 16Mib ADC */

8 };

9 dma_mem_1: dma_mem@0x10000000 {
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10 reg = <0x0 0x10000000 0x0 0x01000000 >; /* 16Mib FFT */

11 };

12 dma_mem_2: dma_mem@0x11000000 {

13 reg = <0x0 0x11000000 0x0 0x08000000 >; /* 128Mib AVG */

14 };

15 };

In short, this node defines three separate memory blocks which are to be completely ex-

cluded from the kernel’s available memory. Each block is given a base address and size which the

kernel will not map as part of system RAM, but which the DMAs can use freely and the user can

still read from.
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CHAPTER 5. USER SPACE API FOR EFFICIENT FABRIC COMMUNICATION AND
POSTPROCESSING

5.1 Introduction

Chapter 2 discusses work done on the FPGA fabric DSP chain, including its place in the

end-to-end target estimation process for UAV LATIS. In order for this FPGA preprocessing to be

useful, the user needs to know when and how to access packets of data that are sent to memory via

the DMA engines, thus enabling further postprocessing in an efficient, real-time manner. Having

made mention of PetaLinux in Chapter 4, the final missing link is how user space code which is

running within the PetaLinux environment interacts with the FPGA fabric register space.

The fabric registers contained in the LRF Controller are based on the AXI4-Lite interface

[38], which is memory-mapped into the processor address space and kernel device tree, allowing

us to communicate with it by reading from and writing to that memory via user space code. When

communication occurs, the kernel recognizes that the requested address range is reserved for the

PL fabric and routes each request to the registers in the LRF Controller via the full power domain

(FPD) memory bus (which is the M AXI HPM0 FPD in our case). Thus, fabric memory devices

act like any other device in the device tree and can have custom driver code if desired.

As mentioned previously, the LRF Controller contains a variety of features including DSP

configuration options, DMA management options, error monitoring reports, and status registers.

All of this is available through the LRF Controller registers, of which there are 32, allowing us

to develop simple API functions that the user can use to run target estimation postprocessing in

software while simultaneously running preprocessing in the FPGA. This concurrent operation is

essential for real-time radar, and requires that communication with the preprocessing registers and

packet memory be fast and predictable. The postprocessing algorithms are limited by the time

taken for preprocessing, which may repeat 500µs as described in the latency section of Chapter 2;

thus, every cycle spent on fabric communication subtracts from the time allotted to the postpro-
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cessing algorithms. Thankfully, basic memory reads and writes (which make up the majority

of fabric communication) are fairly fast and predictable, minimizing general communication and

DMA interrupt monitoring times.

This chapter surveys a few of the many API functions to give examples of how the LRF

Controller register space is managed from the software user’s perspective. The first section explains

the nature of the PS-to-PL interface, including the types of features offered, while the second

section explains briefly how the API functions themselves are built to achieve maximum efficiency.

5.2 Fabric Register Space: Control/Status Interfaces

As was discussed briefly in Chapter 2, various IP are connected to the LRF Controller via

CSI ports, or Control/Status Interface ports. This interface is a custom interface made in Vivado

containing two required buses—control and status—and an optional third bus called the address

bus (which is used primarily for the DMA controllers). Intuitively, the control bus is meant to

send configuration commands from the LRF Controller to a given IP, while the status bus carries

information back to the Controller. The address bus is configured with the same directionality as

the control bus, as an output from the Controller. All three buses have 32 bits so as to correspond

to the AXI4-Lite address space.

All IP which have extensive configuration or status options are given a CSI. Such IP include

windowing, FFT, averaging, and all three DMA controllers. Other IP with fewer configuration

and status signals, such as switches and decimation, have IO pins which are not part of a formal

interface. Regardless of their interface, most control and status signals are connected into the LRF

Controller register space so that the user can observe and interact with them via the user API in

software.

Software API access can be divided into four basic categories: functional configuration

options (such as enabling or disabling the window), process configuration options (PRI counters,

decimation factor, averaging packets, etc.), updatable coefficients (FIR and windowing), and sta-

tus reports (general status and error reporting). The following subsections describe each of these

in more detail. For information about how each pin available to user space works, refer to Ap-

pendix B.
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5.2.1 Functional Configuration Options

Functional configuration options enable and disable specific fabric functions. Some of

these features include the run/stop bit of the LRF Controller which starts and stops automatic chirps

and packet processing; the enable/disable bit of the window function (also called bypass mode)

which will either window incoming data or pass it through unchanged; and the enable/disable bit

corresponding to the mean subtraction IP, which turns the mean subtraction feature on and off.

These three are all user-controlled functional features, but there are also various derived

functions, such as enabling a specific DMA controller to process data transfers. Except for in bit-

accuracy mode, the DMA controllers are enabled and disabled depending on the mode selected by

the user. If the user selects ADC mode, for example, the ADC DMA controller is enabled and the

other two are disabled.

Some features are both user-controller and derived like the FFT half-frame mode. This

option is always enabled in full DSP mode (only allowing the first 2048 words of a packet to

be sent through to correlation), but is open for user-configuration when in FFT mode so that the

user can observe the entire packet of FFT data if desired. In a sense, the run/stop bit in the LRF

Controller also falls into this category as the Controller will only allow a single packet to run at

a time when the Controller is in bit-accuracy mode, automatically deasserting the run bit after a

single packet if the user asserts it.

Functional configuration features are the most basic control options of the LRF Controller

and they are all configured using a single bit in the LRF Controller register space.

5.2.2 Process Configuration Options

Process configuration options differ from functional options in the sense that they describe

how the functional features will work. Some of these options include the number of packets to be

averaged in the averager, the mode of the LRF Controller, and the decimation factor.

For the most part, process configuration options can be configured at will, but they have

lower priority than functional configuration options. Thus, some DMA process options may not

take effect if requested while the DMA controller is disabled. Furthermore, process options have

configuration limitations which must be observed for proper functionality. The max value of the
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PRI counter in the LRF Controller, for example, cannot be set below a certain value to help protect

against start signals which are too frequent to produce proper behavior. This max value must also

be higher than the delay counter or the LRF Controller will not run. Other configuration signals,

like the number of averaged packets, are designed to be used as an exponent or multiplier value, so

sending the value ‘2’ to the averager will average four packets (22). This option uses three bits but

can only support values from 0 to 6 (1 to 64 averaged packets), defaulting values outside of that

range to 0. Similarly, the decimation factor in the window function acts as a multiplier, computing

packet size as a multiple of 4096.

These special considerations make process options more challenging to configure correctly,

and can easily result in undefined behavior if used incorrectly. For this reason, the documentation

in Appendix B is provided. Furthermore, to correctly configure the PRI counter max value, tips

from the latency section of Chapter 2 should be observed.

5.2.3 Updatable Coefficients

For maximum flexibility, the FIR Compiler and window function support runtime config-

urable coefficients. This means that the user can precompile sets of coefficients in preparation for

a variety of different postprocessing algorithms and target estimation strategies.

The window function coefficients are stored in a BRAM block which is memory-mapped

into kernel memory via the Xilinx BRAM Controller [39]. The coefficients are all 16-bit signed

and the BRAM is configured as 32-bit memory space, such that the window function reads out

a single 32-bit word every two clock cycles and performs an operation on every cycle. For size,

we also assume that the window is symmetric and the state machine reads up to a given point in

memory and then reads back down to make a full window. This way the user can send half of a

window to the BRAM memory and obtain a full window operation for a variety of different packet

sizes. Because the BRAM Controller is mapped separately from LRF Controller’s register space,

it can be sent coefficients at will at any stage of operation (as long as the RAM is ready).

The FIR Compiler behaves differently from the window function, as it is a Xilinx IP [19]

designed for minimal resource usage and simple interfacing. The coefficients are all sent into the

Compiler via an AXI4-Stream interface, meaning that coefficients must be sent in the proper order

and are not manually assigned to addresses. While this can be unintuitive, it simplifies the design
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and allows us to create a single 32-bit dedicated register in the LRF Controller which has an AXI4-

Stream protocol layer to communicate with the FIR Compiler and transact coefficients. From user

space, coefficients are transmitted by writing to the same LRF Controller register over and over

until all coefficients have been sent. Sending these coefficients can technically be done at any time,

however the FIR Compiler has been observed to go into an error state if the coefficients are sent or

updated at the wrong time or in the wrong way.

5.2.4 Status Reports

The final variety of API signals is the broadest and most common—status signals. To make

debugging easier, as well as for monitoring any run-time issues that may occur, extensive status

signals are provided from most IP to the LRF Controller, and then from the LRF Controller to

user space. The LRF Controller itself also generates a variety of unique status signals regarding

the timing of packets and DMA transfers, and also offers some control signals that can reset status

error reports. For clarity, the following list gives a brief survey (not exhaustive) of error and status

reports provided to the user.

1. State machine states—Most IP with a state machine report which state they are in to the LRF

Controller. This allows the Controller to know when packets can be started and when DMA

transfers can be performed.

2. Channel synchronization errors—Because there are so many channels running in parallel,

it can be helpful to ensure that all channel transactions are being performed synchronously,

especially as the handshake for channels becomes independent at times (in the FFT, for

example). The channel synchronization signal monitors transaction flags and reports their

synchronicity.

3. DMA interrupts—One LRF Controller register for each DMA engine is dedicated as an

interrupt. This register is set to all 1s within a few cycles of the DMA interrupt signal

reporting a completed transfer. Using this method to monitor transfers has proven to be

faster and more reliable than other interrupt techniques.
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4. Counters—Various counters report the progress status of certain IP processes. The window

function reports the internal word counter for each word that is windowed. The LRF Con-

troller manages an interrupt counter for the averager DMA engine to report the number of

AXI clock cycles it takes to perform the DMA transfer. And the DMA controllers all provide

counters corresponding to the current link in the ring buffer that a transfer is being written

to.

5. TLast unexpected or missing—As the DSP chain relies on 4096 samples being processed

through to the end, guaranteeing the movement of complete packets is important for proper

behavior. IP such as the FFT, FIR Compiler, and downsampler provide error signals to

indicate that a packet was misaligned according to the TLast flag.

6. FFT arithmetic overflow etc.—Some IPs provide unique error signals depending on their

operation, such as the FFT overflow flag which reports whether or not the FFT arithmetic has

overflowed given the user’s input scaling schedule. Other unique status examples include the

BRAM busy signal from the window function, write collision from the averager, and error

signals from the Xilinx DMA engines (see the documentation [29]), and the PLL lost-lock

signal.

The only control feature associated with status signals is that some error signals can be

reset. A global error reset signal clears all clearable errors in the LRF Controller so that the user

can monitor which new errors occur in certain circumstances. Various errors signal, such as those

regarding the TLast flag, can also be cleared directly by writing a zero to the asserted error bit.

5.3 Communicating with Fabric Registers

Having discussed what the fabric LRF Controller register space offers to the user, now

we will look at how the software makes use of the various features. First, a note on the order of

operations for configuration, then a discussion of how communication takes place.
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5.3.1 Order of Operations

In a word, this section is a disclaimer for configuring the LRF Controller. While there are

many valid ways to configure IP in the DSP chain, and many valid orders in which commands can

be sent, not all configurations and orders will produce correct behavior. Because of the complexity

of the design, it is difficult to perform exhaustive testing of every input in every order, and occa-

sionally during testing we have seen errors which require a reset of the fabric logic or a complete

reloading of the bitstream. Unfortunately, these errors are not always easy to repeat or debug, and

resolving them is complicated by the unknown timing between when commands are sent from

code and when they are actually written to fabric register space. The following list provides a few

scenarios that have been seen to cause issues, and tips to avoid them:

1. Take care when reloading FIR coefficients. Hanging has occurred in the FIR Compiler where

new coefficients are not accepted, usually requiring the bitstream to be reloaded to fix the

Compiler. Because the FIR Compiler receives coefficients from a register in the LRF Con-

troller, and because we don’t know the exact architecture for how the FIR Coefficients are

accepted and managed, it is difficult to understand exactly what causes the error. The vast

majority of times that FIR errors have occurred have been when the coefficients were sent

in code immediately following other register access. Providing some delay between other

commands and setting the coefficients should help to avoid this problem.

2. Originally, changing LRF modes on the fly caused a host of issues because packets would

still be running and DMAs wouldn’t be able to finish transfers, but extensive efforts have

gone into resolving this by waiting in hardware for packets to finish before making changes.

Likewise, a variety of control logic checks were applied to prevent invalid configurations

from causing issues while packets are being processed, such as when changing the decima-

tion factor. However, care should be taken when changing any configurations and note that

anticipating all possible configuration orders is difficult.

3. Should persistent errors occur, try resetting the fabric using the reset bit in the LRF Controller

register 0. This is a soft reset which resets all control logic in the design and has proven

effective in various error situations. If errors persist, reload the bitstream. If errors still

persist, then try power cycling the board.
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5.3.2 Communication Technique

Actually communicating with the register space is easy. In the Vivado address editor, each

memory-mapped slave, such as the LRF Controller, is given a base address. This address is passed

into PetaLinux via the HDF or XSA file to be loaded as a node in the device tree. From this base

address, because each 32-bit register is technically 4, 8-bit addresses, writing to each register is the

same as writing 32-bit words to addresses offset by multiples of 4 from the base address (0x0, 0x4,

0x8, 0xC, etc.).

Because the control and status registers are mostly compact groupings of several individual

features, accessing specific features requires a mask. The majority of the user API functions are

simply calls which read a register, mask out the corresponding bits for the requested feature, and

then return those bits. If changes are made, the mask is used to change only the desired bits while

leaving others alone and then writing the new value back into the register. As these operations

appear frequently in the API, set and get functions were created to perform the writes and reads of

select bits given a mask as follows:

1 // Retrieve only particular bits of a register

2 uint32_t regGetBits(uint32_t* virtual_address , int offset , uint32_t mask)

3 {

4 // Get current reg value

5 uint32_t currentReg = regGet(virtual_address , offset);

6

7 // Get trailing zero count of mask to know how much to shift

8 int lowerBitOffset = getTrailingZeros(mask);

9

10 // Extract value

11 uint32_t value = (currentReg & mask) >> lowerBitOffset;

12

13 return value;

14 }

1 // Update only particular bits of a register

2 void regSetBits(uint32_t* virtual_address , int offset , uint32_t mask ,

uint32_t value)

3 {
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4 // Get current reg value , excluding the bits we want to change

5 uint32_t currentReg = regGet(virtual_address , offset);

6 uint32_t keepBits = currentReg & (~mask);

7

8 // Get trailing zero count of mask to know how much to shift

9 int lowerBitOffset = getTrailingZeros(mask);

10

11 // Move the value to the proper location and re -mask in case of user

mistake

12 uint32_t bitsToSet = (value << lowerBitOffset) & mask;

13

14 // Build new register value and send back to reg

15 uint32_t newReg = keepBits | bitsToSet;

16 regSet(virtual_address , offset , newReg);

17 }

Both functions require the memory-mapped base address (the virtual address in this case),

the particular register offset, the mask corresponding to the bits being read or written to, and in the

case of a write, the value to be written.

These functions are the lowest level of API, directly writing to the LRF registers via the

virtual address mapping. The second tier of functions, usually denoted by the prefix “lrf module ”

operate on user inputs and call one of these two base functions to perform an operation. The

function to start or stop the LRF Controller, for example, accepts an input flag and sets the LRF

run/stop bit accordingly:

1 // Set the RUN bit

2 void lrf_module_run(bool doRun)

3 {

4 uint32_t runValue = doRun ? 1 : 0;

5

6 regSetBits(getLRFVirtAddr (), LRF_CTRLR_R0_LRF_CONTROL , LRF_RUN_MASK ,

runValue);

7 }

Above these “lrf module” functions, more involved functions actually request and accept

user input, check bounds, and then call lower level functions to perform actions. These functions
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can be fairly complicated, such as those which wait for DMA interrupts and then send data over

the network, or relatively simple, such as setting the decimation factor shown here:

1 // Set decimation factor from user input

2 void setDecimationFactor ()

3 {

4 printf("\n\n");

5 printf("What decimation factor? (1-%d)\n", LRF_MAX_DEC_FACTOR);

6

7 // Wait for user input

8 uint32_t dec_factor = ui_readIntegerFromPrompt("Enter value: ", 10);

9

10 // Check bounds and write dec factor if valid

11 if(dec_factor < 1 || dec_factor > LRF_MAX_DEC_FACTOR)

12 printf("Invalid decimation factor\n");

13 else

14 {

15 lrf_module_win_setDecimationFactor(dec_factor);

16

17 // Print new register value to verify

18 printf("Window register updated: 0x%.8x\n", regGet(getLRFVirtAddr (),

LRF_CTRLR_R6_WIN_CONTROL));

19 }

20 }

To provide some scope for integration, these three levels of user API functions provide the

foundation for postprocessing algorithms. The user can first configure the fabric and initiate packet

preprocessing, and then run software postprocessing on data pulled from the reserved memory

blocks where the DMAs transfer their data. Estimated targets can then be used locally or sent over

the network for object detection and avoidance in UAV traffic systems.
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CHAPTER 6. CONCLUSION

As we described in the introduction, local air traffic information systems are not currently

suitable for low-altitude, small-scale UAV devices. They are expensive and large and poorly suited

for the rapidly developing market of short-range airborne devices. Such devices are growing in

number each year but traffic systems which ensure safe travel have not yet been implemented to

match this growth.

Is it possible to ensure air safety for these devices? Yes. Can we adapt current LATIS

platforms to small-scale operation? Yes. This thesis has sought to do so and the results are very

promising.

Herein we have described the HDL processing chain for 2-dimensional UAV radar using

16 phased array input channels. We discussed the HDL design itself, including performance and

contribution to UAV traffic systems, as well as resources created in conjunction with the processing

system which describe how to interface with it. Specifically, Chapter 2 described each component

of the design in detail with some instruction on how each is used and the effect it has on data

processing. Chapter 3 discusses resource and timing constraints of the design and various strategies

used to optimize and improve timing of the design. Chapter 4 contains some basic information

regarding the PetaLinux platform developed for this project, including how it is used in conjunction

with the design, and Chapter 5 describes how software running in the PetaLinux environment can

interface with the FPGA fabric for effective postprocessing. Various appendices support each of

these chapters, including XDC and device tree documents, a full PetaLinux tutorial, and the latest

pinout definition for the LRF Controller.

We hope that this material may be of benefit for future research in UAV traffic management

applications and offer this HDL development as a working proof of concept for low-cost, efficient

digital signal processing for UAV traffic control radar. In recent field tests with airborne UAV
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devices the integrated design as produced promising results in target detection algorithms which

are currently under development.

6.1 Contributions

This thesis and the UAV LATIS project it was completed for provide a new approach to

UAV traffic management systems. The FPGA hardware in this design makes the following contri-

butions:

1. Inexpensive

(a) UltraZed-EV MPSoC provides a complete processing system with low cost

2. Optimized for small-scale LATIS

(a) Efficient DSP chain processes 16 channels of radar data in real time to create 3-dimensional

target estimates for local air traffic

(b) Precise PRF as high as 2kHz to balance range and velocity estimates for local air traffic

(c) Range resolution optimized for a variety of short-range UAV profiles

3. User-driven research

(a) Extensive analysis of timing and resource improvements for designs with high conges-

tion and utilization

(b) PetaLinux information including a basic but complete PetaLinux tutorial describing its

use in our design

(c) Processing chain functions optimized for maximum user control and easy data man-

agement for postprocessing algorithms

6.2 Future Work

While much improvement has been made over the course of this project, the design is not

yet complete. Anticipated future work is described in the following list:
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1. Ensuring a robust fabric design against all configurations and implementation runs (including

predictably met timing)

2. Form factor and packaging improvement

3. Power optimization

4. Extensive integrated outdoor testing with UAVs

5. Beamforming and target estimation (including Doppler processing) which matches real-time

performance of fabric processing for large datasets

6. Exploration of alternate FPGA processing architectures for more efficient computation

7. Full DSP chain bit-accuracy testing and complete verification suite
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APPENDIX A. VIVADO XDC CONSTRAINTS

The constraints file provided here was used to supply constraints for the complete imple-

mented design. These constraints have many notes to accompany them in the pages below, though

additional information about Vivado XDC constraints in general can be found in Xilinx documen-

tation [26]. Though the manual place and route constraints for the shift register were also part of

the design, they were all automatically generated by Vivado and thus are not included here. To

view these constraints, see the project’s git repository.
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1   ###########################################################################################
2   ################################### CLOCK CONSTRAINTS ###################################
3   ###########################################################################################
4   ##### CREATE CLOCKS #####
5   # Create clocks for timing the shift register inputs---bit clock is 315MHz with data on the 630MHz edges  
6   # word_clk is not generated as a clock, because it is never actually used as a clock (it is always just sampled by 

the bit_clk)
7   # The equivalent word clock is about 45MHz
8   # Note 1: this will give lots of warnings about creating one clock from two ports, which isn't physically possible, but 

it works
9   # just fine for timing and simulation so it doesn't matter. The point is to time the nets created by both input clocks 

the same way.
10   # Note 2: there are two clocks here---Vivado times all clocks together by default, so if they have the same 

attributes, they are
11   # effectively the same clock. We use two for the bit clock to time the incoming clock differently but together with the 

clock
12   # after it enters the FGA
13   # This clock represents the clock internal to the FPGA and is timed with the virt_bit_clk
14   create_clock -period 3.174 -name bit_clk -waveform {0.000 1.587} [get_ports {bit_clk_0_p_0 bit_clk_1_p_0}];
15   # This clock is what everything will be timed against, and represents the clock of the ADC itself
16   create_clock -period 3.174 -name virt_bit_clk -waveform {0.000 1.587};
17   
18   ##### GROUP CLOCKS #####
19   # Group clocks as asynchronous to skip timing analysis in both directions---see UG903
20   # Each group in this command is said to be asynchronous with the rest:
21   #   1. clk_pl_0 is asynch with everything else because the other clocks may change at runtime
22   #   2. clk_pl_1 is related to the bit clock and word clock in frequency, but we don't know the phase
23   #      relationship between them because the adc pll may produce some phase inconsistency
24   #   3. bit_clk can change at run time (we can change the phase), and is therefore also asynchronous to the other 

clocks
25   #
26   # NOTE0: The assumption with grouped clocks is that we are properly handling the synchronization and don't want 

the tools to
27   #        give us errors for clocks that we know are going to give us errors, but that we are actually handling properly
28   # NOTE1: This constraint may throw synthesis critical warnings on the pl clocks because internal IP constraints are 

not 
29   #        processed together until implementation; see "report_compile_order -constraints" tcl command report
30   # NOTE2: This is apparently a "dangerous" command, which I would agree with, because it eliminates timing 

reports for places
31   #        where the clocks exchange data. However, the command supports different modes, and the asynchronous 

mode implies that the
32   #        clocks do interact physically, but that there is no known relationship between them. This is the case between 

the clk_pl_0 
33   #        and clk_pl_1 because the latter will change at runtime. Dangerous, yes, but so is the nature of the design.
34   set_clock_groups -asynchronous -group {clk_pl_0} -group {clk_pl_1} -group {bit_clk virt_bit_clk};
35   
36   ##### BIT CLOCK FALSE PATHS #####
37   # Ignore timing between the rising and falling edges of the bit clocks
38   # We can ignore these paths because the reset signal in the iddre1 primitive (which is synchronized to rising edge 

of the bit clock  
39   # but must reset both rising and falling edge registers) has asynchronous de-assertion, so we should be able to 

safely ignore timing 
40   # errors.
41   # Falling to rising
42   set_false_path -fall_from [get_clocks bit_clk] -rise_to [get_clocks bit_clk];
43   # Rising to falling
44   set_false_path -rise_from [get_clocks bit_clk] -fall_to [get_clocks bit_clk];
45   
46   ##### INPUT DELAY AND TIMING #####
47   # These constraints are confusing but they appear to work with the following theory:
48   #   1. Because we have two clocks which are times together, by default data launched on the edge of one is 

clocked in on the next
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49   #      edge of the other. But, these are the same clock, so we tell the tools that the data is clocked into the FPGA 
and then is to

50   #      be registered on the same edge. Thus the "set_multicycle_path 0" attribute for setup checks (which is 1 by 
default).

51   #   2. By nature, the hold checks work on the 0 edge of the clock, which is to say the N-1 edge where N 
corresponds to the edge 

52   #      which clocks the data. This is because the hold checks measure whether or not the signal is held long 
enough before changing,

53   #      which is evalued on the launch edge of the data. So, to correspond correctly with the new setup check 
multicycle path of 0, 

54   #      we must also make hold 1 less than that or -1. 
55   #   3. For the setup checks, we ignore the opposite edge paths because as far as setup is concerned, data is 

clocked from each edge
56   #      to its corresponding same edge. This is because, even though the data is changing twice as often, we are still 

telling the
57   #      tools that the data is being clocked in on is launch edge.
58   #   4. For the hold checks, we ignore the same edge paths because the data actually is changing twice as often as 

each edge thinks, 
59   #      and we are telling the tools that the data is to be analyzed as though it will be changing after each edge. (As 

far as I 
60   #      understand it, anyway.)
61   #   5. Note 1: If the multicycle paths are different, the design still may meet timing, but the values will not be 

correct. For example,
62   #      using a hold multicycle path of 0 instead of -1 shows that hold timing is met by over 3 nano seconds. This 

doesn't make sense
63   #      because the date is changing twice as often as that. Instead, using the -1 value produces a timng margin of 

less than 1ns, which 
64   #      is more what we would expect from a tight timing path. 
65   #   6. Note 2: These notes are all just from my own understanding and interpretation of documentatin and forums. 

The way that Vivado 
66   #      handles timing can be confusing and there is likely much more to the values used, and perhaps better ways to 

constrain things.
67   #      If any of this is incorrect, then it because information is sparce and timing analysis within the tools is nebulous. 
68   # Resolve setup issues on false paths
69   set_multicycle_path 0 -from [get_clocks virt_bit_clk] -to [get_clocks bit_clk];
70   set_false_path -setup -rise_from [get_clocks virt_bit_clk] -fall_to [get_clocks bit_clk];
71   set_false_path -setup -fall_from [get_clocks virt_bit_clk] -rise_to [get_clocks bit_clk];
72   # Resolve hold issues on false paths
73   set_multicycle_path -1 -hold -from [get_clocks virt_bit_clk] -to [get_clocks bit_clk];
74   set_false_path -hold -rise_from [get_clocks virt_bit_clk] -rise_to [get_clocks bit_clk];
75   set_false_path -hold -fall_from [get_clocks virt_bit_clk] -fall_to [get_clocks bit_clk];
76   
77   # These input delays were tuned in a different project with only the shift register which gave the IP more ideal 

placement than this
78   # project as it had no competition with other IP placement. 
79   # Note: these min and max values imply that the data arrives just after the corresponding clock edge, however this 

is relatively 
80   # arbitrary because we can adjust the clock phase relative to the data and technically clock bits on the opposite 

edge if desired.
81   # In reality, if the timing for the shift register is met, it is saying that with clock and data propagation, the data will be 

able to
82   # be clocked into the FPGA on the same edge that is "launching" it into the FPGA. This is why the phase for the 

ADC is so tight, because
83   # the timing margin suggests that for a clock phase of less than 0 or very close to 0 (relative to the data edge), 

timing will barely 
84   # be met at 45MHz. The lesson is that if a larger phase range is desired, a delay block will have to be used 

because the natural FPGA  
85   # net and logic delays will only allow a certain timing margin to be met as defined. 
86   # Alternatively, having established that the data to clock edge relationship is arbitrary as far as timing is concerned, 

delaying the 
87   # clockby 360 degrees would also technically produce the same timing results as produced by the timing tools, but 

a different edge would
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88   # be clocking the data.   
89   set_input_delay -clock [get_clocks virt_bit_clk] -min 0.12 [get_ports {bit_data_in_* word_clk_*}];
90   set_input_delay -clock [get_clocks virt_bit_clk] -max 0.25 [get_ports {bit_data_in_* word_clk_*}];
91   # falling edge input delay
92   set_input_delay -clock [get_clocks virt_bit_clk] -clock_fall -min -add_delay 0.12 [get_ports {bit_data_in_*}];
93   set_input_delay -clock [get_clocks virt_bit_clk] -clock_fall -max -add_delay 0.25 [get_ports {bit_data_in_*}];
94   
95   ##### CLOCK GROUPS #####
96   # Reduce skew between incoming data clocks---see UG912
97   set_property CLOCK_DELAY_GROUP shift_reg_group [get_nets -of_objects [get_ports {bit_clk_0_p_0

bit_clk_1_p_0}]];
98   # Reduce skew between outgoing adc clocks 
99   set_property CLOCK_DELAY_GROUP adc_clock_group [get_nets -of_objects [get_ports {O_clk_p_0

O_clk_p_1}]];
100   
101   ##### TIMING NOTES #####
102   # The following notes describe cross clocking domains as errors arise. They may not reflect current errors because 

constraints will
103   # be changed as needed.
104   #   A. Intra-Clock paths are the critical timing issues because they mean that the delay is to long between registers 

on the same clock
105   #       0. Some failures with clk_pl_0 have been noted in the FIR compiler and the DMA engines; any failures with 

this clock must be resolved
106   #       1. There appear to be hold time errors on the bit_clock falling edge with the IDDRE1. Upon observation, the 

phase can be adjusted
107   #          in the ADCs to produce fully valid frames, but this may be an issue later. The interesting thing is that the 

violations are only
108   #          on the hold time of the falling edge (from what has been observed). This may be researched more later but 

for now will be ignored,
109   #          particularly because the input delays have been user-defined.
110   #   B. Inter-Clock paths require synchronization as clock domains are crossed, such as in the following noted timing 

error cases
111   #       1. Clock path "bit_clk to clk_pl_1" involves the domain crossing from the bit clock in the shift register (which 

clocks out new 
112   #          words based on the frame clock) to the window function where data is clocked in on the pl_1 clock, which is 

the same frequency
113   #          as the word clock but with unknown phase. This crossing may not meet timing because the phase is 

unknown.
114   #              a. The issue is mitigated by allowing for an optional clock inversion in the shift register to clock on a 

different edge if 
115   #                 phase alignment is poor. Because the frequency of the word and pl_1 clocks are the same, this is a 

low severity issue.
116   #       2. Clock path "clk_pl_1 to bit_clk" involves the reset synchronization used for the IDDRE blocks. This path 

may fail timing
117   #          for the same reason as shown in the reverse direction for these clocks: the pl_1 clock and word clock don't 

have a known phase.
118   #              a. This issue is mitigated by synchronizing the reset signal with two registers on which the async_reg 

attribute has been set.
119   #       3. Clock path "word_clk to bit_clk" involves the domain crossing between the word clocks and the bit clocks in 

the shift register.
120   #          This crossing is really always going to be an issue because the phase can be adjusted and depends on the 

location of registers 
121   #          and logic in the shift register. This fails timing because the word clock is sampled on the bit clock, but they 

technically are
122   #          both produced at the same time. 
123   #              a. This issue is mitigated by the ability we have to adjust the phase of the bit clock relative to the word 

clock
124   #       4. The set_clock_groups removes timing warnings for clocks not grouped together. This means that some 

paths will not be reported
125   #          depending on how the clocks are currently being constrained.
126   #       5. The **async_default** errors are kind of odd, because the registers are constrained to have asynchronous 

resets, but then they 
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127   #          still seem to try to report timing errors. Looking at the timing report, the issue is caused by the fact that 
there are both 

128   #          rising and falling edge registers in the IDDRE1 blocks, which means that synchronizing the reset to the 
rising edge, makes it

129   #          very difficult to meet timing on the falling edge register. In this design, the reset is synchronized on the 
positive edge, so

130   #          the falling edge warnings are valid, but there is not much that can be done to mitigate the timing errors. 
Timing will be VERY

131   #          hard to meet with a frequency requirement of 14*40 = 560MHz from rising to falling edge. In the IDDRE1 
documentation, it says

132   #          that the reset pin is asyncronous with release synchronous to the clock, so either way, the reset 
functionality should be fine.

133   
134   ###########################################################################################
135   ############################ ADC board pinout (FMC connector) #################################
136   ###########################################################################################
137   ##### ADC DATA #####
138   # CHANNEL 1A
139   set_property -dict {PACKAGE_PIN AA16 IOSTANDARD LVDS DIFF_TERM_ADV TERM_100} [get_ports

{bit_data_in_0_p_0}]; # HP_DP_05_P 
140   # CHANNEL 1B
141   set_property -dict {PACKAGE_PIN AC17 IOSTANDARD LVDS DIFF_TERM_ADV TERM_100} [get_ports

{bit_data_in_1_p_0}]; # HP_DP_04_P
142   # CHANNEL 1C
143   set_property -dict {PACKAGE_PIN AC16 IOSTANDARD LVDS DIFF_TERM_ADV TERM_100} [get_ports

{bit_data_in_2_p_0}]; # HP_DP_09_P 
144   ## CHANNEL 1D
145   set_property -dict {PACKAGE_PIN AG16 IOSTANDARD LVDS DIFF_TERM_ADV TERM_100} [get_ports

{bit_data_in_3_p_0}]; # HP_DP_08_P 
146   ## CHANNEL 1E
147   set_property -dict {PACKAGE_PIN AG13 IOSTANDARD LVDS DIFF_TERM_ADV TERM_100} [get_ports

{bit_data_in_4_p_0}]; # HP_DP_17_P 
148   ## CHANNEL 1F
149   set_property -dict {PACKAGE_PIN AK13 IOSTANDARD LVDS DIFF_TERM_ADV TERM_100} [get_ports

{bit_data_in_5_p_0}]; # HP_DP_16_P 
150   ## CHANNEL 1G
151   set_property -dict {PACKAGE_PIN AE14 IOSTANDARD LVDS DIFF_TERM_ADV TERM_100} [get_ports

{bit_data_in_6_p_0}]; # HP_DP_21_P 
152   ## CHANNEL 1H
153   set_property -dict {PACKAGE_PIN AC14 IOSTANDARD LVDS DIFF_TERM_ADV TERM_100} [get_ports

{bit_data_in_7_p_0}]; # HP_DP_20_P 
154   ## CHANNEL 2A
155   set_property -dict {PACKAGE_PIN AJ10 IOSTANDARD LVDS DIFF_TERM_ADV TERM_100} [get_ports

{bit_data_in_8_p_0}]; # HP_DP_25_P 
156   ## CHANNEL 2B
157   set_property -dict {PACKAGE_PIN AF10 IOSTANDARD LVDS DIFF_TERM_ADV TERM_100} [get_ports

{bit_data_in_9_p_0}]; # HP_DP_24_P 
158   ## CHANNEL 2C
159   set_property -dict {PACKAGE_PIN AK7 IOSTANDARD LVDS DIFF_TERM_ADV TERM_100} [get_ports

{bit_data_in_10_p_0}]; # HP_DP_29_P 
160   ## CHANNEL 2D
161   set_property -dict {PACKAGE_PIN AJ5 IOSTANDARD LVDS DIFF_TERM_ADV TERM_100} [get_ports

{bit_data_in_11_p_0}]; # HP_DP_28_P 
162   ## CHANNEL 2E
163   set_property -dict {PACKAGE_PIN AJ4 IOSTANDARD LVDS DIFF_TERM_ADV TERM_100} [get_ports

{bit_data_in_12_p_0}]; # HP_DP_37_P 
164   ## CHANNEL 2F
165   set_property -dict {PACKAGE_PIN AJ11 IOSTANDARD LVDS DIFF_TERM_ADV TERM_100} [get_ports

{bit_data_in_13_p_0}]; # HP_DP_36_P
166   ## CHANNEL 2G
167   set_property -dict {PACKAGE_PIN AG11 IOSTANDARD LVDS DIFF_TERM_ADV TERM_100} [get_ports

{bit_data_in_14_p_0}]; # HP_DP_41_P
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168   ## CHANNEL 2H
169   set_property -dict {PACKAGE_PIN AH9 IOSTANDARD LVDS DIFF_TERM_ADV TERM_100} [get_ports

{bit_data_in_15_p_0}]; # HP_DP_40_P 
170   
171   ##### ADC FCO #####
172   # ADC0
173   set_property -dict {PACKAGE_PIN AD17 IOSTANDARD LVDS DIFF_TERM_ADV TERM_100} [get_ports

word_clk_0_p_0]; # HP_DP_13_GC_P
174   # ADC1
175   set_property -dict {PACKAGE_PIN AH6 IOSTANDARD LVDS DIFF_TERM_ADV TERM_100} [get_ports

word_clk_1_p_0]; # HP_DP_33_GC_P
176   
177   ##### ADC DCO #####
178   # ADC0
179   set_property -dict {PACKAGE_PIN AF16 IOSTANDARD LVDS DIFF_TERM_ADV TERM_100} [get_ports

bit_clk_0_p_0]; # HP_DP_12_GC_P
180   # ADC1
181   set_property -dict {PACKAGE_PIN AG6 IOSTANDARD LVDS DIFF_TERM_ADV TERM_100} [get_ports

bit_clk_1_p_0]; # HP_DP_32_GC_P
182   
183   ##### SPI #####
184   set_property -dict {PACKAGE_PIN AH4 IOSTANDARD LVCMOS18} [get_ports emio_spi0_sclk_o_0]; # 

HP_SE_05
185   set_property -dict {PACKAGE_PIN AG9 IOSTANDARD LVCMOS18} [get_ports emio_spi0_m_o_0]; # HP_SE_06
186   set_property -dict {PACKAGE_PIN AG19 IOSTANDARD LVCMOS18} [get_ports emio_spi0_ss_o_n_0]; # 

HP_SE_01
187   set_property -dict {PACKAGE_PIN AC13 IOSTANDARD LVCMOS18} [get_ports emio_spi0_ss1_o_n_0]; # 

HP_SE_02
188   
189   ##### PS to ADC Clocks #####
190   set_property -dict {PACKAGE_PIN AA14 IOSTANDARD LVDS} [get_ports O_clk_p_0]; # HP_DP_22_P
191   set_property -dict {PACKAGE_PIN AH12 IOSTANDARD LVDS} [get_ports O_clk_p_1]; # HP_DP_42_P
192   
193   ##### PLL #####
194   # Chirp
195   set_property -dict {PACKAGE_PIN C14 IOSTANDARD LVCMOS18} [get_ports pulse_out_0]; # HD_SE_14_P
196   # SPI
197   set_property -dict {PACKAGE_PIN G13 IOSTANDARD LVCMOS18} [get_ports emio_spi0_ss2_o_n_0]; # 

HD_SE_18_GC_P
198   set_property -dict {PACKAGE_PIN G14 IOSTANDARD LVCMOS18} [get_ports emio_spi0_m_o_1]; # 

HD_SE_15_N
199   set_property -dict {PACKAGE_PIN H14 IOSTANDARD LVCMOS18} [get_ports emio_spi0_sclk_o_1]; # 

HD_SE_15_P
200   # PLL Lock
201   set_property -dict {PACKAGE_PIN F13 IOSTANDARD LVCMOS18} [get_ports PLL_lock_0]; # HD_SE_18_GC_N
202   
203   ###########################################################################################
204   ################################### PBLOCK Constraints #####################################
205   ###########################################################################################
206   ##### Shift Reg #####
207   create_pblock pblock_shift_reg;
208   add_cells_to_pblock [get_pblocks pblock_shift_reg] [get_cells -quiet [list design_1_i/shift_register_0]];
209   resize_pblock [get_pblocks pblock_shift_reg] -add {CLOCKREGION_X2Y0:CLOCKREGION_X2Y2};
210   
211   ###### LRF Controller #####
212   create_pblock pblock_lrf_ctrlr;
213   add_cells_to_pblock [get_pblocks pblock_lrf_ctrlr] [get_cells -quiet [list

design_1_i/lrf_controller/axi_lrf_controller_0]];
214   
215   ##### DMA 2 #####
216   create_pblock pblock_dma2;
217   add_cells_to_pblock [get_pblocks pblock_dma2] [get_cells -quiet [list
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design_1_i/ps/dma_engines/dma_block_2/axi_dma_0]];
218   add_cells_to_pblock [get_pblocks pblock_dma2] [get_cells -quiet [list

design_1_i/ps/dma_engines/dma_block_2/axis_dwidth_converter_0]];
219   
220   ##### DMA 3 and Averager #####
221   create_pblock pblock_dma3;
222   add_cells_to_pblock [get_pblocks pblock_dma3] [get_cells -quiet [list

design_1_i/ps/dma_engines/dma_block_3/axi_dma_0]];
223   add_cells_to_pblock [get_pblocks pblock_dma3] [get_cells -quiet [list

design_1_i/ps/dma_engines/dma_block_3/axis_dwidth_converter_0]];
224   add_cells_to_pblock [get_pblocks pblock_dma3] [get_cells -quiet [list

design_1_i/correlator_and_averager/axis_packet_averager_0]];
225   
226   ##### Correlator #####
227   create_pblock pblock_cor;
228   add_cells_to_pblock [get_pblocks pblock_cor] [get_cells -quiet [list

design_1_i/correlator_and_averager/axis_correlator_0]];
229   
230   ##### SmartConnect #####
231   create_pblock pblock_smc;
232   add_cells_to_pblock [get_pblocks pblock_smc] [get_cells -quiet [list design_1_i/ps/axi_smc_1]];
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APPENDIX B. LRF CONTROLLER PINOUT DEFINITION

The following pages are the full product guide for the LRF Controller. These pages describe

the pinout definition for all LRF Controller registers, which includes all CSI ports in the design, as

well as a variety of other configurable features. These notes describe what each pin is for, where

it is found, which pins can be set by the user and/or hardware, and some guidelines for how each

should be used.

87
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1   --------------------------------------------------------------------------------------------------------
2   --------------------------------------IP DESCRIPTION --------------------------------------
3   --------------------------------------------------------------------------------------------------------
4   -- This IP is a controller for the second generation of LATIS Radar Firmware. It contains extensive control and system

monitoring logic, and is designed to produce very consistently timed frames in the system it is controlling. Each of
various processing IP is controlled from this central location and status signals from each of them is returned for
observation. DMA transfers are handled in FPGA fabric and are triggered by this module to provide consistent and
automatic high speed data transfer that can be observed, but not blocked, by the user.

5   

6   -- In addition to the registers described below, this controller has FIR config and reload ports which can be connected
directly into the FIR compiler corresponding ports. The FIR reload register will stream coefficients as they are written,
and the appropriate bit in the LRF main control register will send the config command.

7   

8   -- Non-CSI ports include:
9   -- 1. Shift register clock invert which controls the polarity of the shift register clock edge for timing
10   -- 2. FIR tlast error signals
11   -- 3. An external channel sync error input which will trigger the same internal error signal when asserted if used,

(this was made with the correlator in mind which doesn't have a CSI interface)
12   -- 4. The start chirp signal which is pulsed every time the LRF controller state machine reaches 0
13   -- 5. A LRF word clock input for cross clock timing of the start of each processing frame (should be connected to

the shift register ref clock)
14   -- 6. Various switch configuration signals, including enable signals and a mode signal, as well as a share control

signal for DMA 2 in bit accuracy mode
15   -- 7. A reset output which can be tied into the processor system resets aux port for resetting the whole design
16   -- 8. FIR config and reload AXIS ports which can be connected directly into the FIR compiler's corresponding ports.

The FIR reload register will stream coefficients as they are written, and the appropriate bit in the LRF main control
register will send the config command to load new coefficients.

17   -- 9. The begin packet option is the same signal as is sent through the CSI interface to the window, and is made
external for the mean subtraction.

18   -- 10. The enable mean subtraction port enables the mean subtraction IP. If left low, mean subtraction registers the
input directly to output with latency of 1.

19   -- Generic options include:
20   -- 1. Include external reset port
21   -- 2. Interleaved averaging mode, which configures the FFT to allow blocking in full DSP mode
22   -- 3. Include external channel sync port
23   

24   -----------------------------------------------------------------------------------------------------------------------------------
25   ---------------------- LRF CONTROLLER CSI REGISTER PINOUT DEFINITIONS ----------------------
26   -----------------------------------------------------------------------------------------------------------------------------------
27   -- The following comments describe the purpose of all pins in all registers in the LRF controller.
28   -- These registers make up the status and control signals for each functional custom IP in the Latis Radar Firmware

project.
29   -----------------------------
30   -- Hierarchy Explanation:
31   -- Register_Group
32   -- reg_ID_#: reg_name
33   -- pin-# pin name; pin-is-modifiable-by-user,pin-is-modifiable-by-controller; pin explanation
34   -----------------------------
35   -- LRF
36   -- 0: lrf module control register
37   -- 0 lrf reset; 1,1; this pin is connected to an optional external pin to be sent to the proc_sys_reset

block (toggled for 1 cycle)
38   -- 1 run; 1,1; turn on or off the lrf module (this is reset after each frame in bit accuracy mode)
39   -- 2-3 lrf modes; 1,0; 00-adc mode (only adc data output is enabled), 01-fft mode (only fft output is

enabled), 10-full dsp mode (only final output is enabled), 11-bit accuracy mode (all dmas are enabled, note that
non-blocking IP in this mode can be disasterous)

40   -- 4 clear all errors; 1,1; set a 1 to this bit to clear bits error registers in status register (toggled for 1
cycle)

41   -- 5 fir config; 1,1; reload fir coefficients after they have been sent (held high until accepted)
42   -- 6 shift register clock invert; 1,0; invert the output clock from the shift register
43   -- 7 start manual frame; 1,1; begin a single frame manually (goes to running state)
44   -- 8 enable mean subtraction; 1,0; enable the mean subtraction IP before the window
45   -- 9-31 '0'
46   -- 1: lrf_module_status_reg
47   -- 0 initializing; 0,1; lrf module (or internal IPs) are resetting and/or are not yet set up and ready to run

(in setup_st)
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48   -- 1 idle; 0,1; lrf module is in idle state
49   -- 2 running; 0,1; the lrf module is enabled and running
50   -- 3-4 '0'
51   -- 5 dsp chain complete error; 0,1; the averager dma didn't finish sending data before the averager tried

to send the next frame, this can be cleared by user with bit 4 of control register
52   -- 6 dma 1 tx error; 1,1; dma 1 sent more than 1 transfer during a frame, this can be cleared by user

with bit 4 of control register or directly
53   -- 7 dma 2 tx error; 1,1; dma 2 sent more than 1 transfer during a frame, this can be cleared by user

with bit 4 of control register or directly
54   -- 8 dma 3 tx error; 1,1; dma 3 sent more than 1 transfer during a frame, this can be cleared by user

with bit 4 of control register or directly
55   -- 9 lrf sync error; 0,1; timing or synchronization error between adc channels (when configured in such a

way tha multiple channels are present), this can be cleared by user with bit 4 of control register
56   -- 10 fir coeff error; 0,1; fir coefficient that was sent to controller was not accepted in time by fir

compiler, this can be cleared by user with bit 4 of control register
57   -- 11 fir reload tlast unexpected; 1,1; coefficient tlast was received early, this can be cleared by user with

bit 4 of control register or directly
58   -- 12 fir reload tlast missing; 1,1; coefficient tlast was not received on time, this can be cleared by user

with bit 4 of control register or directly
59   -- 13 fft overflow; 1,1; fft scaling has overflowed, this can be cleared by user with bit 4 of control register

or directly
60   -- 14 fft tlast unexpected; 1,1; tlast in fft arrived was received early, this can be cleared by user with bit

4 of control register or directly
61   -- 15 fft tlast missing; 1,1; tlast in fft arrived was received late, this can be cleared by user with bit 4 of

control register or directly
62   -- 16 decimation tlast misaligned; 1,1; tlast in decimator is not aligned with the decimation counter, this

can be cleared by user with bit 4 of control register or directly
63   -- 17 averager write collision; 1,1; averager was sent data before it was ready (either according to SM or

internal fifo), this can be cleared by user with bit 4 of control register or directly
64   -- 18 pll lock error; 1,1; indicates whether or not the pll is locked (high means lock was deasserted), this

can be cleared by user with bit 4 of control register or directly
65   -- 19-31 '0'
66   -- 2: lrf_chirp_counter_value_reg
67   -- 0-31 lrf chirp counter value; 1,0; full number of clock cycles for a chirp, meaning that the counter will

start the chirp on '0', count to the max value minus 1, roll over, and start another chirp on '0' with no latency
between complete counts

68   -- 3: lrf_chirp_counter_delay_value_reg
69   -- 0-31 lrf chirp counter delay value; 1,0; number of clock cycles to delay between chirp and beginning of

processing, meaning that '0' begins the frame on the same cycle that begins the chirp
70   -- Empty Register
71   -- 4-5: extra register
72   -- 0-31 '0'
73   -- Window
74   -- 6: M_CSI_window_function_control
75   -- 0 '0'
76   -- 1 begin frame; 0,1; signals the start of a frame (aligns with the first word)
77   -- 2 bypass mode; 1,0; enable bypass mode
78   -- 3 enable luke shift; 1,0; enable flipping the sign bit functionality for offset data
79   -- 4-9 '0'
80   -- 10-26 data counter max value; 1,0; (data stream is zeros after this value)
81   -- 27-31 dec factor; 1,0; (multiplied by frame size to get words per blocked frame)
82   -- 7: M_CSI_window_function_status
83   -- 0 idle; 0,1; window is in an idle state, no data is being sent, IP is ready
84   -- 1 running; 0,1; bram is being read and output data is valid (while tvalid is high)
85   -- 2 rstb busy; 0,1; bram is busy and should not be read
86   -- 3 bypass mode; 0,1; setting this bit high will send the adc data through a buffer register and to the

output without windowing it
87   -- 4 sleep mode; 0,1; bram is asleep due to bypass mode (may include more use later)
88   -- 5 waiting; 0,1; window function is in a wait state, either bram or the window counter value have not

been set correctly
89   -- 6 decimation tlast misaligned; 0,1; decimation counter is not aligned with the tlast signal
90   -- 7-14 '0'
91   -- 15-31 word counter; 0,1; counter of values as they are multiplied (counted at output)
92   -- FFT
93   -- 8: M_CSI_fft_control
94   -- 0 '0'
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95   -- 1 config tvalid; 1,1; controller has valid configuration data for fft (this value is reset to 0 after
configure transaction completes); only configures enabled ffts

96   -- 2 master tready enable; 0,1; enable the master tready signal to allow the downstream to pause stream
97   -- 3 half fft; 1,1; only produce half of the fft at the output (tvalid goes low, tlast is early)
98   -- 4-19 '0'
99   -- 20-31 scale schedule; 1,0; scale schedule for the ffts
100   -- 9: M_CSI_fft_status
101   -- 0 idle; 0,1; fft is in idle state, ready
102   -- 1 config tready; 0,1; fft is ready for reconfigure
103   -- 2 '0'
104   -- 3 init; 0,1; fft is initializing, waiting to exit init state or waiting for ffts to become ready for data
105   -- 4 channel sync error; 0,1; the functioning fft channels are not synchronized
106   -- 5 event frame started; 0,1; a frame has begun to processm (start for dma)
107   -- 6 fft running; 0,1; tied to m_tvalid of the ffts indicating a frame is complete and being transferred
108   -- 7 event fft overflow; 0,1; indicates that the scaling in the fft blocks has overflowed
109   -- 8 event tlast unexpected; 0,1; indicates that tlast entered the fft early
110   -- 9 event tlast missing; 0,1; indicates that tlast entered the fft late
111   -- 10-14 '0'
112   -- 15-31 word counter; counter of output values
113   -- Empty Registers
114   -- 10-11: extra register
115   -- 0-31 '0'
116   -- Averager
117   -- 12: M_CSI_averager_control
118   -- 0 '0'
119   -- 1-3 avg frames; 1,0; exponent number of frames to be averaged (2^avg_frames are averaged)
120   -- 4-31 '0'
121   -- 13: M_CSI_averager_status
122   -- 0 idle; 0,1; IP is ready
123   -- 1 done; 0,1; IP has completed averaging (pulse at start of done state)
124   -- 2 load; 0,1; IP is loading data into fifos
125   -- 3 send; 0,1; IP has finished processing and is sending data to down stream (high during whole state

where data is being taken out)
126   -- 4 channel sync error; 0,1; averaging fifos aren't syncronized at output (m_tvalid is not syncronized

across fifos)
127   -- 5 write collision; 0,1; a write was attempted on the fifos when they weren't ready to receive data
128   -- 6-17 '0'
129   -- 18-31 counter; 0,1; counter of output data as it is being sent
130   -- FIR_reload
131   -- 14: FIR_Coefficients
132   -- 0-15 fir coefficients; 1,0; user sends coefficients to this address, which are then sent to the fir compiler

(sending sequentially to this register, will cause each coefficient to be sent out sequentially)
133   -- 16-30 fir coefficient ID; 1,0; user sends a coefficient id with the coefficient for tx verification
134   -- 31 fir coefficient tlast; 1,0; the user must associate this with the last coefficient sent to the fir compiler

(the last coefficient expected by the compiler)
135   -- DMA 1 Controller
136   -- 15: M_CSI_dma_ctrlr_1_control
137   -- 0 disable dma; 0,1; tell the controller to put the dma in a disable state
138   -- 1 start dma; 0,1; tell the controller arm the dma to send data
139   -- 2 ring buffer; 1,0; run the controller as a ring buffer
140   -- 3 new destination; 1,1; tell the controller to load a new destination address into the dma
141   -- 4-9 max link index; 1,0; maximum index that the ring buffer will count to (0 to 63 possible, for max ring

buffer of size 64)
142   -- 10-31 link size; 1,0; size of each link in the ring buffer in bytes
143   -- 16: M_CSI_dma_ctrlr_1_status
144   --- DMA register space status signals (see PG021) ---
145   -- 0 dma halted; 0,1
146   -- 1 dma idle; 0,1
147   -- 2 dma reserved (0); 0,1
148   -- 3 dma SG included (should be 0); 0,1
149   -- 4 dma internal error; 0,1
150   -- 5 dma slave error; 0,1
151   -- 6 dma decode error; 0,1
152   -- 7 dma reserved (0); 0,1
153   -- 8-10 dma SG errors (not used; should be 0); 0,1
154   -- 11 dma reserved (0); 0,1
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155   -- 12 dma interrupt on complete; 0,1
156   -- 13 dma interrupt on delay (only for scatter gather; not used); 0,1
157   -- 14 dma interrupt on error (present but never cleared by this controller); 0,1
158   -- 15 dma reserved (0); 0,1
159   --- User status signals ---
160   -- 16-19 '0'
161   -- 20-25 current link; 0,1; indicates current link of the ring buffer being written to and incremented at the end

of each frame, this is reset to 0 when the new destination flag is set high
162   -- 26 dma disable; 0,1; controller is disabled
163   -- 27 dma resetting; 0,1; controller is in reset and dma is in the process of a graceful reset
164   -- 28 dma idle; 0,1; controller is in idle state (waiting for start signal)
165   -- 29 dma tx running; 0,1; controller is running a transfer
166   -- 30 dma tx complete; 0,1; controller has completed a transfer
167   -- 31 dma clearing irq; 0,1; controller is clearing the irq flag
168   -- 17: M_CSI_dma_ctrlr_1_dest_address
169   -- 0-31 destination address; 1,0; optional alternate destination address if desired (when 0, default is used)
170   -- DMA 2 Controller
171   -- 18-20: See DMA 1 Controller
172   -- DMA 3 Controller
173   -- 21-23: See DMA 1 Controller
174   -- DMA 3 Counter
175   -- 24: DMA 3 TX Counter
176   -- 0-31 counter; 0,1; counter which begins incrementing from zero when the third dma begins a transfer and

holds its value when the dma completes the transfer
177   -- DMA Interrupt Registers
178   -- 25: DMA 1 Interrupt Register
179   -- 0-31 interrupt register; 1,1; set to all 1s when interrupt occurs, reset by user to all zeros
180   -- 26: DMA 2 Interrupt Register
181   -- 0-31 interrupt register; 1,1; set to all 1s when interrupt occurs, reset by user to all zeros
182   -- 27: DMA 3 Interrupt Register
183   -- 0-31 interrupt register; 1,1; set to all 1s when interrupt occurs, reset by user to all zeros
184   -- Processing Counter
185   -- 28: DSP Processing Counter
186   -- 0-31 counter difference; 0,1; reports the difference between the counter delay value and the counter itself

when the DSP dma is started (avg done flag is asserted)
187   -- Empty Registers
188   -- 29-31: extra registers
189   -- 0-31 '0'
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APPENDIX C. PETALINUX HELPS

As described in Chapter 4, the following pages contain the custom device tree used to build

this project’s PetaLinux kernel images, as well as the complete PDF tutorial and troubleshooting

information developed as a starting point for building the images.

C.1 PetaLinux Device Tree

The user device tree (system-user.dtsi) is initially autogenerated by the PetaLinux tools as

an empty file where the user can add their own device nodes and overrides. A few of these nodes,

such as gem3, i2c1, qspi, and dwc3 0 were copied from the board support package (BSP) system-

user.dtsi file provided by Avnet. Other nodes were either created new for our purposes or were

modified from the original BSP device tree.
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1   /include/ "system-conf.dtsi"
2   / {
3   /* everything in this chosen node except for "uio_pdrv...uio" is stuff 
4   that normally petalinux will add to the boot args, but this node overwrites 
5   all of those so we have to add them again here as well */
6   chosen { 
7   bootargs = "earlycon console=ttyPS0,115200 clk_ignore_unused root=/dev/mmcblk1p2 rw rootwait 

isolcpus=3";
8   stdout-path = "serial0:115200n8";
9   };

10   
11   reserved-memory {
12   #address-cells = <2>;
13   #size-cells = <2>;
14   ranges;
15   
16   dma_mem_0: dma_mem@0x0F000000 {
17   reg = <0x0 0x0F000000 0x0 0x01000000>; /* 16Mib ADC */
18   };
19   dma_mem_1: dma_mem@0x10000000 {
20   reg = <0x0 0x10000000 0x0 0x01000000>; /* 16Mib FFT */
21   };
22   dma_mem_2: dma_mem@0x11000000 {
23   reg = <0x0 0x11000000 0x0 0x08000000>; /* 128Mib AVG */
24   };
25   };
26   };
27   
28   &gem3 {
29   status = "okay";
30   local-mac-address = [00 0a 35 00 02 90];
31   phy-mode = "rgmii-id";
32   phy-handle = <&phy0>;
33   phy0: phy@0 {
34   reg = <0x0>;
35   ti,rx-internal-delay = <0x5>;
36   ti,tx-internal-delay = <0x5>;
37   ti,fifo-depth = <0x1>;
38   };
39   };
40   
41   &i2c1 {
42   status = "okay";
43   clock-frequency = <400000>;
44   
45   i2cswitch@70 { /* U7 on UZ3EG SOM, U8 on UZ7EV SOM */
46   compatible = "nxp,pca9542";
47   #address-cells = <1>;
48   #size-cells = <0>;
49   reg = <0x70>;
50   i2c@0 { /* i2c mw 70 0 1 */
51   #address-cells = <1>;
52   #size-cells = <0>;
53   reg = <0>;
54   /* Ethernet MAC ID EEPROM */
55   mac_eeprom@51 { /* U5 on UZ3EG IOCC and U7 on the UZ7EV EVCC */
56   compatible = "at,24c08";
57   reg = <0x51>;
58   };
59   /* CLOCK2 CONFIG EEPROM */
60   clock_eeprom@52 { /* U5 on the UZ7EV EVCC */
61   compatible = "at,24c08";
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62   reg = <0x52>;
63   };
64   };
65   };
66   };
67   
68   &qspi {
69   #address-cells = <1>;
70   #size-cells = <0>;
71   status = "okay";
72   is-dual = <1>; /* Set for dual-parallel QSPI config */
73   num-cs = <2>;
74   xlnx,fb-clk = <0x1>;
75   flash0: flash@0 {
76           /* The Flash described below doesn't match our board ("micron,n25qu256a"), but is needed */
77           /* so the Flash MTD partitions are correctly identified in /proc/mtd */
78   compatible = "micron,m25p80"; /* 32MB */
79   #address-cells = <1>;
80   #size-cells = <1>;
81   reg = <0x0>;
82   spi-tx-bus-width = <1>;
83   spi-rx-bus-width = <4>; /* FIXME also DUAL configuration possible */
84   spi-max-frequency = <108000000>; /* Set to 108000000 Based on DC1 spec */
85   };
86   };
87   
88   /* SD0 eMMC, 8-bit wide data bus */
89   &sdhci0 {
90   status = "okay";
91   bus-width = <8>;
92   max-frequency = <50000000>;
93   disable-wp;
94   };
95   
96   /* SD1 with level shifter */
97   &sdhci1 {
98   status = "okay";
99   max-frequency = <50000000>;

100   no-1-8-v; /* for 1.0 silicon */
101   disable-wp;
102   };
103   
104   /* ULPI SMSC USB3320 */
105   &usb0 {
106   status = "okay";
107   };
108   
109   &dwc3_0 {
110   status = "okay";
111   dr_mode = "host";
112   phy-names = "usb3-phy";
113       snps,usb3_lpm_capable;
114       phys = <&lane2 4 0 2 52000000>;
115   };
116   
117   &spi0 {
118   num-cs = <3>;
119   status = "okay";
120   spidev@0x00 {
121   compatible = "spidev";
122   spi-max-frequency = <50000000>;
123   reg = <0>;
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124   };
125   spidev@0x01 {
126   compatible = "spidev";
127   spi-max-frequency = <50000000>;
128   reg = <1>;
129   };
130   spidev@0x02 {
131   compatible = "spidev";
132   spi-max-frequency = <50000000>;
133   reg = <2>;
134   };
135   };
136   
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C.2 PetaLinux Tutorial

This tutorial was started as part of classwork and then expanded as part of research to

explain how to begin and see PetaLinux image development through to completion. It contains a

variety of debugging tips and explains how to configure various features that we included in our

design.

The following tutorial pages are attached as a PDF. Depending on the format of the attach-

ment, the links may or may not work. However, the original tutorial can be found in the project’s

git repository.
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UltraZed-7EV PetaLinux Tutorial

Kacen Moody September 3, 2020
BYU Electrical and Computer Engineering

Purpose

The goal of this tutorial is to build a PetaLinux 2019.2 image for the UltraZed-EV board (specifically,
the UltraScale+ MPSoC using the Xilinx XCZU7EV-FBVB900 FPGA), including some advanced image
configuration features. Expected outcomes are the following:

• Create a working PetaLinux image and its corresponding boot image, to be booted from an SD
card, and accessed via UART (through a micro USB port) and SSH

• Learn to navigate the PetaLinux tools, including various configuration features

Requirements

• Installed PetaLinux 2019.2 tools (page 9, UG1144)

• Installed Vivado 2019.2 (or PetaLinux 2019.2 compatible version) with UltraZed-7EV board files

• Correctly formatted SD card (page 65, UG1144)

• UltraZed-EV board with a carrier card that includes an SD reader, Ethernet, and micro USB

• Basic understanding of Linux command line
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1 Building Simple PetaLinux Images

1.1 Set Up the Environment

First, the PetaLinux environment must be set up. This is done by running a script in the command
line and must be done every time a new terminal window is opened to use the tools. For a bash shell,
the command is as follows: (page 13, UG1144):

$ source <path−to−i n s t a l l e d−PetaLinux>/ s e t t i n g s . sh

1.2 Create a Project

Next, we can create and initialize a project using the petalinux-create command (page 20,
UG1144). The tools will create a root directory and populate it with various configuration and build
files, so this command should be executed in the directory where you want the project’s root folder to
reside.

$ peta l inux−c r e a t e −−type p r o j e c t −−template zynqMP −−name my petal inux

Template options are zynqMP, zynq, or microblaze, and as the UltraZed-EV is an MPSoC, the zynqMP
is appropriate in this case.

Alternatively, a project can be created using a board support package (BSP) produced by Avnet, but
that will not be discussed here. Refer to UG1144, page 16.

1.3 Importing Hardware and Configuring the Image

With the project initialized, go into the project’s root directory in the terminal. The next step is to
configure the image in accordance with the hardware present on the UltraZed-EV. Implied here is that
while the template we used in the previous step will set up the framework for the general zynqMP
architecture, the PetaLinux tools must have an idea about how the processor system is to be configured
on whichever MPSoC the project is targeting. To do this we must build a Vivado project and export
either the HDF or XSA file, which will then be imported into the PetaLinux tools. Below, we will
describe the steps for building a very slimmed down project containing just the ZynqMP processor. If
you have already built a Vivado project, skip ahead to number 8.

1. Start Vivado 2019.2

2. Under “Quick Start” click on “Create Project” and set up the project using the defaults
without any additional source files (it doesn’t matter what the name or location of the project
are). When you arrive at the “Default Part” page, select either the “UltraZed-7EV SOM”
or “UltraZed-7EV Carrier Card” board as shown in Figure 1, choosing whichever option
corresponds with what you are targeting (visit the “Using a Custom Carrier Card” section for
more information on which board to use). This way, the UltraZed board files can populate the
project constraints using existing board peripherals if necessary. If these boards are not present in
the list, you will likely need to install the UltraZed board files into Vivado before proceeding.
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Figure 1

3. After finishing the setup and waiting for Vivado to initialize the project, click on “Create Block
Design” under “IP Integrator” on the left.

4. In the center of the new window that opens, click on the plus sign to add an IP, and select
“Zynq Ultrascale+ MPSoC.”

5. When the IP has been added, click “Run Block Automation” in the green strip above it and
then click “OK.” This will reduce the number of IO pins visible on the block but will populate it
with typical features as shown in Figure 2.

Notice that UART and SD are both enabled. On the block in the block diagram, there will only be
the pl resetn0 and pl clk0 ports remaining as shown in Figure 3, which we will leave unconnected.

3
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Figure 2

6. Next, in order to build the project, Vivado needs the block diagram to have a top level wrapper
module, so in the upper left pane, click on “Sources” and then right click on “design 1”
next to the little orange symbols. From the menu, click “Create HDL Wrapper...” and then
click “OK.” This is shown in Figure 3.

Figure 3

7. This is all for the processor so click “Generate Bitstream” below “Program and Debug” in the
left pane. Click “Yes” if asked to save the project and then choose to launch runs first as well. It
may take a while for the project to compile.

8. After the bitstream has been compiled, click on “File” in the upper left of the GUI and select

4
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“Export Hardware...” from the “Export” option toward the bottom of the drop down menu. In
the window that comes up, check the “Include bitstream” box as shown in Figure 4 and click “OK.”
This step will create the HDF or XSA file that we want. (Vivado 2019.2 will create an XSA
by default, while earlier versions of Vivado create an HDF.) Take note of where the output will be
saved.

Figure 4

9. In the file system, navigate to the save location of the exported hardware. By default, the file
will be called design 1 wrapper.xsa (or .hdf). Copy this file into the root directory of the
PetaLinux project we have already created.

10. We can now import the exported hardware file into the project using the petalinux-config
command in the terminal as follows (page 23, UG1144):

$ peta l inux−c o n f i g −−get−hw−d e s c r i p t i o n =.

This command will start the configuration process by extracting information from the hardware
file.

Notice that the command searches within a directory (specified in this case by the period after the
equals sign) and does not look for a specific file name. Don’t include the name of the hardware
file in this command, just give the path of the directory where the hardware file is located. After
importing the file, the command line GUI shown in Figure 5 will open.

5



www.manaraa.com

Figure 5

11. This GUI will allow us to control various build options, but we want the tools to handle everything
for us so the only thing we will do is change the boot location to be the SD card. To do this,
select the “Image Packaging Configuration” option and then select “Root filesystem type.” This
will bring up a smaller window with the options, from which we will select the “EXT” option
before “other” which includes “SD” (among other things) as shown after selection on the
first line in Figure 6.

12. After the type has been selected, a new menu item called “Device Node of SD device” will have
appeared below it. Select this option and change mmcblk0p2 to mmcblk1p2 as shown on
the second line in Figure 6.

Additional Information: The change in the previous step will tell the boot sequence to search for
the ext file system type on the SD card (in our case) when setting up the filesystem.

This step tells the boot sequence to search on the second partition of the SD card for the filesystem
(hence the “p2”), and we change the 0 to a 1 because on boot up, every memory driver is given an
ID based how the hardware is set up. According to the Avnet documentation for the UltraZed-EV
board, the eMMC flash device is given the device name SD0 which corresponds to mmcblk0, while
the SD card is called SD1 and is called mmcblk1. Refer to page 14 of the UltraZed documentation
(this link may require login and download of the pdf) for more information.
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Figure 6

13. After these two items have been changed, save the configuration and exit the GUI (leaving
the save location as it is). It may take a little while for the configuration to finish, especially the
first time.

14. The last necessary step of the configuration process is to modify the device tree entry for the SD
card block to disable write protect. To do this, go to project-spec/meta-user/recipes-bsp/device-
tree/files/ starting from the project root directory. In this directory, open the system-user.dtsi,
which at this point should be empty, and add the following lines so that the contents of the
file look as follows:

/ i n c lude / “system−conf . d t s i ”
/ {
} ;

/∗ SD1 with l e v e l s h i f t e r ∗/
&sdhc i1 {

s t a t u s = “okay ” ;
max−f r equency = <50000000>;
no−1−8−v ; /∗ f o r 1 . 0 s i l i c o n ∗/
d i sab l e−wp;

} ;

Additional Information: This system-user.dtsi file will be parsed by the PetaLinux tools and used to
add or overwrite features of modules which reside in other device tree files automatically generated
by the tools.

The device node that we have added is taken from the system-user.dtsi file in the out-of-box BSP
produced by Avnet, and in this case, because it is outside of the “/ { };” block, and because we
use the “&node name” syntax, what we are adding will be included with the attributes of the
same node which already exists in the auto-generated device tree, overwriting attributes of the
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same name. There are a few things going on here. The first is that we enable the SD driver by
setting the status to “okay.” Then we disable write protect with “disable-wp,” which is necessary
because the default configuration prevents drivers from changing memory they can access as we
need to be able to do on the SD card. The other two lines essentially just configure the maximum
frequency (which per Avnet docs is 52MHz) and configure the driver to have the level shifter which
is required by the SD card reader. Without the addition of this node, the boot process will begin
but the kernel won’t be able to take control of the root file system, causing it to hang.

1.4 Building the PetaLinux Image

1. Now that things have been configured, we can build the PetaLinux kernel image. This is done
using the petalinux-build command with no additional tags as shown here (page 25, UG1144):

$ peta l inux−bu i ld

Depending on the available hardware of the host OS, this build can take around 20 minutes or over
an hour. The result will be an image.ub file that will contain the PetaLinux kernel with all of the
hardware and software configurations we have given it.

Additional Information: Note that the petalinux-build command can also be run with the -c flag
which allows you to build out single components. If you only want to build, say, the device tree or
kernel image files, you can run petalinux-config -c device-tree or petalinux-build -c kernel. There
are many component options to build various parts independently which can reduce build time by
avoiding building unnecessary parts.

WARNING: rebuilding an image after making changes may require cleaning the project first.
Refer to this section if you are rebuilding a project after making changes.

1.5 Packaging the Boot Image

1. Next, we nee to compile the boot image using the petalinux-package command as shown (page
27, UG1144):

$ peta l inux−package −−boot −−fpga −−u−boot

Additional Information: The tags in this command tell the tools what is being packaged and what
to include. The boot tag in this case will request that the BOOT.BIN file be produced, while the
other two tags tell the tools to include the bootloader (u-boot) and the FPGA bitstream (fpga)
within the BOOT.BIN. For the latter two tags, the locations of the files can be specified if they
have been created separately, but if not the default location used is wherever the PetaLinux tools
created and placed those files originally. We point this out because we can only use the FPGA tag
without a file location afterward due to the fact that we included the bitstream in the exported file
from Vivado. If the bitstream were not included, using this tag as we have would produce an error.
More information about this command (and others) can be found in UG1157 (the link references
page 20 where petalinux-package begins).

1.6 Copying Files to the SD Card

1. Now that everything has been generated, we can copy the image.ub and BOOT.BIN files
over to the first partition of the SD card. These images are found, again starting from the
project root directory, in the images/linux/ directory. There are many generated image files but
we only want these two.

2. In the second partition, which should have been formatted as ext4, we need to set up the filesystem.
To do this, copy the rootfs.tar.gz zip folder to the second partition and extract it using
the following terminal command (while the terminal path is in the rootfs partition). You will
need to put in your user password for the command to execute because it must be run with “sudo”
privileges. After the filesystem has been extracted, the rootfs.tar.gz archive can be removed.

$ sudo ta r −xz f r o o t f s . t a r . gz
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Additional Information: The .tar.gz archive format preserves access permissions so that when the
filesystem is zipped and then extracted elsewhere, all of the files and directories have the same
permissions that they did originally. This is required for proper booting because the kernel expects
certain directories to be set up beforehand with restricted permissions. The extraction command
must be run with root (sudo) privileges for all restricted permissions to be set up correctly.

2 Booting Petalinux

In order to boot PetaLinux and access it through the network using SSH a few different steps must be
followed.

2.1 Preparing the Workstation

1. Insert the SD card into the reader on the UltraZed’s carrier card.

2. Make sure that the boot configuration switches on the board are set to boot from SD
as described in the Avnet documentation, which will most likely be “OFF-ON-OFF-ON,” [1:4].

3. Connect a USB-to-micro-USB cable between the board and your computer.

4. Connect the board’s Ethernet port to the network your computer is connected to.

5. Before turning the board on, run the screen command in your terminal as follows:

$ sudo sc r e en /dev/ttyUSB1 115200

This will allow you to observe the boot messages as the board starts up and see if any errors occur.
It will also allow you to log in to the board via UART so that you can find out the current IP
address that the board is given on the network.

Note that the command assumes the USB port on your computer is called “USB1,” which may
not be the case. If not, you may need to run dmesg in the terminal to see where the board was
connected, or try different USB# ports as they appear in the /dev/ directory.

Additional Information: Notice that command uses a baud rate of 115200. This is due to the
default configuration set up by the PetaLinux tools.

6. Power on the board. In the terminal you should see boot messages begin almost immediately
and describe things like the bootloader, PetaLinux build version, and then list the kernel boot
messages as the system is loaded.

2.2 Gaining Access to PetaLinux After Boot

1. When PetaLinux is done booting, you will see “my petalinux login:” followed by the cursor in the
terminal (assuming your project is named my petalinux). Enter the username and password,
which are both “root”. You should then see “root@my petalinux:∼#”.

2. You are now logged into PetaLinux. To find the IP address, use the ifconfig command,
which will produce several lines of information starting with those shown here:

root@my petal inux :∼# i f c o n f i g
eth0 Link encap : Ethernet HWaddr 00 :0F : 3 6 : 0 1 : 2 3 : 0 1

i n e t addr : 1 0 . 2 . 1 1 6 . 1 9 4 Bcast : 1 0 . 2 . 1 1 6 . 2 5 5 Mask : 2 5 5 . 2 5 5 . 2 5 5 . 0
i n e t 6 addr : f e81 : : 2 0 d :35 f e : f e00 :2202/64 Scope : Link

The part we care about is “inet addr:10.2.116.194” which will allow us to SSH into the board.

3. In a new terminal, SSH into the UltraZed using the following command, substituting whatever
IP address you saw in the previous step:

$ ssh root@10 . 2 . 1 1 6 . 1 9 4

Again, this should connect to the board and allow you to enter the same credentials as before to
login.
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3 Advanced PetaLinux Configuration

The PetaLinux tools provide extensive user control over the kernel image, its utilities and features. This
section goes over some resources and examples to outline how additional changes to the kernel can be
made.

3.1 Important Note about Custom Configurations—Cleaning the Project, etc.

Before beginning to change any additional configuration options please note the following:

1. If you have already built a PetaLinux project, and then you want to make changes to it
and recompile, it is wise—and sometimes essential—to clean the project. The following
PetaLinux commands provide a complete clean of the build space (see page 14 of UG1157):

$ peta l inux−bu i ld −x d i s t c l e a n
$ peta l inux−bu i ld −c ke rne l −x f i n i s h
$ peta l inux−bu i ld −x mrproper

These commands perform the following tasks as described in the user guide:

(a) petalinux-build -x distclean removes the shared state cache

(b) petalinux-build -x mrproper cleans the entire build area and removes all build-generated files

(c) petalinux-build -c kernel -x finish isn’t in the documentation for some reason, but this is
required by the tools before doing mrproper to finish compiling some uncommitted component
files. This is the case when a component (such as the kernel in the command above) has been
configured using petalinux-config.

Keep in mind that there are other clean commands than these which do various degrees of cleaning
on various parts of the project. See the documentation for information about these other commands.
The ones here were chosen because they provide a complete project clean.

WARNING: if the project is not cleaned, the tools may not apply new changes because it sees
that build products already exist, therefore changes to the system-user.dtsi file and even changes
to the configuration menus, may go un-applied.

2. When you run these commands, it is then important to note that some configuration files
will be removed while others may not. In particular, we have noticed that these commands
sometimes remove configurations in the petalinux-config -c kernel configuration menu, but that the
system-user.dtsi and petalinux-config menu options are left untouched. In general, after cleaning
the project, it is wise to double check all of your configurations to make sure that they have
been retained. Also note that these commands may remove user-added patch files and changes to
bbappend files if they have not yet been applied.

3. If you make any changes to the FPGA hardware (memory mapped devices or IO), you
must start a new PetaLinux project rather than trying to import the new hardware
description into a previous project. For some reason, the new file may often cause build errors
that prevent completion of the image. This doesn’t mean that all FPGA changes require a new
image—for the most part, you only need to build a new image if you change your PS configuration
(including changes to memory-mapped elements), and not elements that are only part of the PL.

3.2 PetaLinux Device Trees

A device tree is a text file that defines various memory-mapped peripherals and their configurations.
The information contained in the device tree will be parsed and compiled into the kernel image, and
during the first stages of the boot process, necessary nodes will be initialized for use by the kernel during
execution. The following two sites are a good place to start as you begin to learn more about how they
work.

1. Device Tree Tips is a page on the Xilinx Wiki which “is intended to be a collection place for tips
and tricks related to device trees.”
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2. Device Trees for Dummies is a slide presentation which goes over device tree background and syntax
for typical nodes. This information is for Linux systems at large, so the PetaLinux device trees
may contain some differences, but the idea and general structure is the same.

Because it is the memory-mapped peripherals that the kernel needs to be aware of, FPGA hardware
designs which contain memory-mapped IP should include those IP in the device tree. Thankfully, when
configuring a project based on the hardware file exported from Vivado, the PetaLinux tools will add
nodes for each memory-mapped IP to auto-generated device tree files without the user having to do any
of this manually. The following steps show how to observe this:

1. In a PetaLinux project like the one made previously that has been configured but not yet compiled,
notice that the components/plnx workspace/ directory only has the conf/ folder in
it. This plnx workspace/ directory will eventually contain the build products for device trees and
other things.

2. Now, build the image. After it completes, you will notice the addition of a device-tree/device-
tree/ directory branch in the plnx workspace/ directory, which is populated with
various .dtsi files among other things.

Additional Information: When the petalinux-build command is run, the default device trees are
auto-generated and parsed together with the system-user.dtsi, which, as we have mentioned before,
allows the user to add in their own nodes and device configurations. If you want to build the device
tree without building the full kernel image, you can run the petalinux-config command as follows
after importing the HDF or XSA into PetaLinux.

$ peta l inux−c o n f i g −c device−t r e e

This will produce all of the same files observed in the following steps.

3. In this device-tree/ directory, open the pl.dtsi (if present) and notice that it is mostly
empty, indicating that our FPGA design doesn’t have any memory-mapped peripherals. This
makes sense because our design only has the zynqMP processor block in it.

4. Now say that we have an FPGA design in Vivado that has a memory-mapped IP called
“axi lrf controller 0,” and which is mapped to the PS memory base address 0xA0000000. After
building the bitstream, exporting the hardware from Vivado and importing it into a PetaLinux
project as we did previously, the petalinux-build command will create the pl.dtsi and
populate it with something similar to the following (along with the header and perhaps a
node for PL clocks):

/ {
amba pl : amba pl@0 {

#address−c e l l s = <2>;
#s i z e−c e l l s = <2>;
compatible = ” simple−bus ” ;
ranges ;
a x i l r f c o n t r o l l e r 0 : a x i l r f c o n t r o l l e r @ a 0 0 0 0 0 0 0 {

c lock−names = ” l r f w o r d c l k ” , ”S AXI ACLK ” ;
c l o c k s = <&misc c lk 0 >, <&zynqmp clk 71>;
compatible = ”xlnx , axi−l r f −c o n t r o l l e r −1.0”;
reg = <0x0 0xa0000000 0x0 0x1000>;

} ;
} ;

} ;

5. This node is essentially saying that the PL exists, and then lists the memory mapped IPs it contains
and their configurations within it. Notice that the axi lrf controller 0 is now in the device
tree, and that it has been given the same address that it had in Vivado. You can also see how it
shows which clocks are connected to it on lines 8 and 9, and that the block will need 0x1000 range
of address space on line 11. This size parameter should also be the same as the size in Vivado.
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Additional Information: To find the default SD memory driver in the device tree, open zynqmp.dtsi
in the same folder. This will have all driver nodes that are included in the processor by default.
Search for “sdhci” and you will see the two memory device drivers with all of their configuration
material. You will recall that it is “sdhci1” that we overwrote previously to configure the UltraZed
to boot from the SD card.

3.3 FPGA Manager Utility

The FPGA Manager is a feature enabled by default in the PetaLinux configuration. One of the purposes
of this feature is to allow the user to change the FPGA bitstream while booted into PetaLinux. In order
to interface with the Manager properly, Xilinx provides the “fpgautil” utility, which the user can execute
to upload a bitstream as described briefly in the following steps:

1. Visit the FPGA Programming section of the Solution ZynqMP PL Programming Xilinx Wiki
page.

2. Under the subsection “Exercising FPGA programming using fpgautil”, click on the link “fp-
gautil.c” to download the utility source code.

3. Next, we have to compile this source code to use it on the board, which can be done using Vitis or
the Xilinx SDK. To do this in the SDK, first open the IDE and set up an application project
to operate on Linux, targeting the psu cortexa53 processor, and using C, as shown in
Figure 7.

Additional Information: The Xilinx SDK version used for these instructions was 2019.1, which is
the last version before the SDK was absorbed into Vitis for 2019.2. Even though we are using
2019.2 for the rest of the tools, compiling the executable for this utility only needs to know that
the platform is Linux and what kind of processor it will be running on. Getting a quick application
project up and running from the SDK is several steps simpler than Vitis, which is why it was
chosen here.
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Figure 7

4. If asked what kind of application project you want to create, the “hello world” template will work
fine. When the project is set up, copy the fpgautil.c file into the src directory and delete
the helloworld.c file.

5. Save this project and build it. If auto-build is not turned on, you can click the hammer in the
upper left of the GUI or press ctrl+b on the keyboard to build the project.

6. In the console window, you should see “Build Finished” which indicates that the executable is ready
in the Debug/ directory. Assuming your application project was called fpgautil as shown in Figure
7, copy the fpgautil.elf executable from <project-root-directory>/fpgautil/Debug/ to
a convenient location in the PetaLinux filesystem.

Additional Information: This can be done from the terminal using the scp command as shown
here (assuming the board is booted and connected to the network as described previously, and also
assuming that you have gone to the SDK project’s root directory in the terminal first).

$ scp f p g a u t i l /Debug/ f p g a u t i l . e l f root@10 . 2 . 1 1 6 . 1 9 4 :∼/

7. Copy a bitstream to the same location as the fpgautil executable. (Or elsewhere on the
board, as long as you point to it correctly in the next command.)

8. Program the bitstream onto the board using the executable as shown here:

$ . / f p g a u t i l . e l f −b des ign 1 wrapper . b i t

The “-b” in this command indicates that the file following it is the bitstream. If successful, the
output should look something like the following:

Time taken to load BIN i s 190.000000 M i l l i Seconds
BIN FILE loaded through zynqMP FPGA manager s u c c e s s f u l l y
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Additional Information: For more information on additional fpgautil options, visit the Xilinx Wiki
page mentioned in the first step.

3.4 Unlocking Protected Device Memory (enabling /dev/mem)

From version to version, Xilinx will occasionally change the defaults for the PetaLinux configuration.
One such example, when migrating from 2019.1 to 2019.2, is that Xilinx enabled a memory protection
module which allows only the kernel to access device memory which is not owned by a device in the device
tree. Prior to this version, the user could write programs, open device memory—called /dev/mem—and
use Linux commands like “mmap” to get a pointer to any memory address and read from and write to
that memory. Because some applications (like DMA) benefit from this flexibility, these next steps show
how to turn off the memory protection module. This will also give a glimpse into another corner of the
PetaLinux tools.

Caveat: Because these steps will remove the restrictions on memory access, there is greater inherent
risk of inadvertently messing up memory contents. This is due to the fact that removing the protection
module will allow the root user (which is the only default user in PetaLinux) to access kernel memory
and restricted memory, such that they can read and write anywhere at will. Furthermore, this will give
malicious users the opportunity to cause intentional damage if they manage to log in as root. So, it is
recommended, where possible, to create a reserved memory node in the device tree that you can access
freely in spite of the memory protection module, rather than disabling that module altogether. However,
because this feature was disabled by default in the past, and for the sake of exploring the tools, the steps
are shown here.

1. These instructions assume that a PetaLinux project has already been created and that the hardware
file has been imported. If the images have been created as well, that’s ok, but they will need to be
rebuilt again after following the rest of the steps.

2. From in the root directory of the PetaLinux project, in a terminal which already has the PetaLinux
tools environment set up, run the petalinux-config command with the kernel component
as shown to open the kernel configuration GUI shown in Figure 8. Unfortunately this GUI has
some formatting issues, but everything is still visible.

$ peta l inux−c o n f i g −c ke rne l

3. Click on “Kernel hacking” option, which is highlighted at the bottom of Figure 8.
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Figure 8

4. In the new menu that appears, scroll down using the arrow keys until you reach the line that says
“[*] Filter access to /dev/mem.” The asterisk in the brackets indicates that it is enabled, so click
“n” on the keyboard to disable it.

5. Save and exit the kernel configuration menu.

6. Proceed as usual to build and package the images. Now, when you boot up PetaLinux, you
will be able to map to all device memory and use it in applications.

Additional Information: One key takeaway from these brief steps is that there are many configuration
options that the user can control. In Figure 8 you can see configuration options for drivers, the filesystem,
booting, power management, cryptography, etc. and within each of these, as we saw with the kernel
hacking option, there are several modules which can be enabled or disabled.

3.5 Enabling SPI Communication from PS

In order to enable SPI in PetaLinux so as to communicate with a peripheral, the SPI port must be
enabled in Vivado and correctly connected. Note that there are many ways to do this, include a SPI IP
in the PL, using the default SPI EMIO ports to communicate with an off-chip SPI peripheral, or building
a custom board that has a SPI peripheral that requires different IO pins. Here, we assume there is an
off chip SPI peripheral to which we want to send data only as a master without requesting data back.
One good tutorial with additional help (though it is for the MicroZed board) can be found here.

1. In the Vivado project, double click on the PS block to open up its configuration GUI.

15



www.manaraa.com

2. In this GUI click on “I/O Configuration” on the left pane, and navigate to “Low Speed,”
then “I/O Peripherals,” then “SPI.”

3. Select the first option as shown in Figure 9, and make sure that it says “EMIO” next to
it. Note, if multiple SPI slaves are desired, click the little arrow next to “SPI 0” and enable more.
This will allow you to put multiple SPI nodes within the SPI0 device as will be shown later on.

Figure 9

4. Click ok, and then observe that the PS adds a SPI 0 port. Click on the plus sign of the port and
follow Figure 10 to make some signals external. If multiple SPI nodes were enabled in the
PS, you will notice that there will be additional SPI select pins such as emio spi0 ss1 o n—these
should be made external as well.

Additional Information: We choose this configuration with the assumption that we want to com-
municate with a peripheral that only acts as a slave, and therefore will only send out the clock
(SCLK), master output (MOSI), and slave select (SS) pins. There are various pins in this port,
including inputs from the slave as well as tristate signals, none of which we need to use if only
sending data out to a slave.
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Figure 10

5. Next, the Vivado constraints must be set to declare the type of output for each SPI connection.
If your project doesn’t have a constraints file, add one by clicking “Add Sources” in the “Project
Manager” section of the left pane in Vivado. After doing this, add the lines shown in Figure
11 to the constraints file. Again, remember that if there are multiple SPI nodes, the additional
SPI select (ss) ports will need to be constrained.

Figure 11

Additional Information: It is important to know that the PACKAGE PIN attribute may change
depending on your custom carrier card. The idea is that you select whichever package pins are
associated with which ever SPI pin and connect them in this fashion. The IOSTANDARD attribute
should also reflect your correct pin type as the voltage output will depend on this.

6. With everything connected and configured, built the Vivado bitstream and import the
xsa/hdf into a new PetaLinux project.

7. In the PetaLinux project, after importing the hardware file and configuration the necessary elements
for booting, go to the kernel configuration menu with the following command:

$ peta l inux−c o n f i g −c ke rne l

8. Then, go into “Device Drivers” and then “SPI Support”.

9. In this menu, scroll down to “User mode SPI device driver support” and click the
spacebar until you see <*>.

10. After this, be sure to save the configuration and exit the config menu.

11. Next, you need to update the system-user.dtsi device tree (see this step) with the following
node:

&sp i 0 {
num cs = <1>;
s t a t u s = ”okay ” ;

spidev@0x00 {
compatible = ” sp idev ” ;
sp i−max−f r equency = <50000000>;
reg = <0>;

} ;
} ;
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If multiple SPI slaves are connected, use the following as a template.

&sp i0 {
num−cs = <2>;
s t a t u s = ”okay ” ;

spidev@0x00 {
compatible = ” sp idev ” ;
sp i−max−f r equency = <50000000>;
reg = <0>;

} ;
spidev@0x01 {

compatible = ” sp idev ” ;
sp i−max−f r equency = <50000000>;
reg = <1>;

} ;
} ;

Additional Information: In the parent node, num-cs is used to tell the kernel how many SPI devices
are connected. Each child node is given a different address as shown, to which the reg attribute
must also correspond. Note that if multiple SPI parent nodes are used (e.g. SPI 1 in the PS config)
they will need to have their own node (e.g. &spi1 {...}).

12. Now, the project can be built and packaged. Communication with a device via SPI from
code is outside of the scope of this tutorial, though various driver files are available (such as those
found here) to help you build a project.

13. To verify that the SPI device is seen by the kernel check the /dev directory where you should
see spidevX.Y nodes (X is the device number and Y is the child node). Note that the device
number may not correspond with the value that you expect. For example, using the steps in this
tutorial for two SPI child nodes—0 and 1—within one parent node—spi0—the two spidev devices
were spidev1.0 and spidev1.1.

Additional Information: While preparing this part of the tutorial, we discovered another SPI device tree
attribute is-decoded-cs, which allows the user to use fewer SPI select ports to communicate with more
SPI peripherals by using the ss pins to decode which SPI to talk to. To make this work, additional
FPGA decode hardware may need to be present for proper functionality.

3.6 Enabling and Working with Interrupts

Interrupts are used in a large variety of ways and can be monitored by an OS in many different ways.
This section is dedicated to help you get started with connecting interrupts to the PS in Vivado and
then enabling them in the device tree for use in programs during runtime. Here is a list of links used
which may help with troubleshooting. The first few are tutorials or general information and the rest
are responses to specific challenges. Before doing this tutorial, be sure to read the section on
project cleaning as adding interrupts to a project that has already been built will likely not regenerate
the necessary files.

• Interrupt driven user space application with the uio driver

• Testing UIO with Interrupt on Zynq Ultrascale

• Linux GIC Driver

• ARM GIC Interrupt Documentation

• Zynq Ultrascale+ Device Technical Reference Manual

• Introduction to Device Trees (In particular the section on interrupts.)

• Device Tree Tips (In particular sections 7 and 8.)
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• Petalinux 2017.4 Zynq PL-PS Interrupt Question (In particular see the pdf posted in the marked
solution.)

• Petalinux custom kernel boot args

• PL-PS INTERRUPT on Ultrazed on Petalinux

Next, we will go through the steps here for configuring PetaLinux correctly and verifying that interrupts
are properly added. Fort this tutorial, we elect to use the Linux GIC driver which can be built into
the PetaLinux image and then modify the device tree with a device from the PL that is producing an
interrupt we want to monitor.

For now, this tutorial doesn’t cover accessing the interrupts from code, but the “Interrupt driven user
space application with the uio driver” link in the previous list has some good starter code for this.

1. In your Vivado project, enable interrupts by double clicking the PS block and going to
“PS-PL Configuration,” then “General,” then “Interrupts,” then “PL to PS,” and
enabling the first option as shown in Figure 12.

Figure 12

2. Click ok. Next, connect whichever interrupt-producing IPs you desire to the PS inter-
rupt port using a Concat block as shown in Figure 13. In this case we just use counters for
demonstration. Note however, that if an interrupt is configured as level sensitive, the signal may
need to be held asserted for several clock cycles before being de-asserted.
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Figure 13

Additional Information: By default, the port is 1 bit wide, but using a Concat block will propagate
a larger width into the port, which will update as validation is run. The max width of each PL to
PS interrupt port is 8. Also, though not explored as much in this tutorial, some IPs, such as DMA,
which are memory-mapped into the PS and which also may have an interrupt connected, may
build out the interrupt information into the DMA device tree node for you. So, we are choosing
counters to prevent this automatic process from occurring and so that we can go through the steps
of adding a new node to the device tree to make the PS aware of the interrupts that aren’t coming
from a memory-mapped block.

3. After connecting the IP, build the bitstream and export the hardware file and copying it
into a PetaLinux project as usual (see this step and those following it for more information).

4. Run the usual configuration of PetaLinux to set up the board for booting and then go to the
kernel config menu with the following command:

$ peta l inux−c o n f i g −c ke rne l

5. In this menu, go to “Device Drivers,” then “Userspace I/O drivers”. In this menu, go to
“Userspace I/O platform driver with generic IRQ handling” and “Userspace platform
driver with generic irq and dynamic memory” and click the spacebar until you see
<*>. The default is likely <M> which modularizes the features but we want them built-in.

6. Save this configuration and exit the menu.

7. Next, we have to make two separate modifications to the device tree: adding a “uio pdrv genirq.of id”
attribute to the boot arguments and creating a node that represents the source of the interrupts.
Open the system-user.dtsi file (discussed previously) and create a chosen node in the
empty device block with the following lines:

/ {
chosen {

bootargs = ” ear lycon conso l e=ttyPS0 ,115200 c l k i g no r e u n us e d
root=/dev/mmcblk1p2 rw rootwa i t u i o p d r v g en i rq . o f i d=gener i c−uio ” ;

stdout−path = ” s e r i a l 0 :115200 n8 ” ;
} ;

} ;

Additional Information: Notice that this node is within the “/ { };” block which is present in the
file by default. All nodes in this block are new and will overwrite blocks if they exist or create them
if they do not. The chosen block allows us to update the boot arguments passed to the kernel in
the first stages of boot up. While what all of the present commands do is outside of the scope of
this tutorial, two things are important to know:

(a) Everything from “earlycon” through “rootwait” as well as the second attribute “stdout-path”
are required. These are normally populated automatically by the PetaLinux tools, but because
we add this node again here in the user-overwrite file, if we don’t include the required bootargs
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they will be overwritten and left out. (Keep in mind that if you are following this tutorial
and using a different board than the one used here, the bootargs will be different and can be
found in the petalinux-config menu, or by finding the system-conf.dtsi file generated by the
PetaLinux tools during build.)

(b) The main addition with regard to interrupts is the “uio pdrv genirq.of id=generic-uio.” This
is not present by default and we add it here to tell the kernel where our interrupt driver is to be
found. The scope of the User I/O (UIO) driver is larger than we can discuss here, but suffice it
to say that it allows the user to communicate with peripherals which are self contained and/or
where the peripheral doesn’t need a full blown driver to communicate with it. Examples of
these are the AXI DMA which can be controlled just by writing to PL registers, and these
interrupts where all we really need is to tell the kernel to watch for them. Neither the kernel
nor the peripheral require any more resources than what they have to communicate with the
other.

8. With this bootargs attribute added, we now need to make a device node for the kernel to associate
the interrupts with. In the same system-user.dtsi, add the following lines outside of the block
we just added the chosen node to:

&amba pl {
c o u n t e r i r q : c o u n t e r i r q {

compatible = ” gener i c−uio ” ;
i n t e r r u p t s = < 0 89 4 >;
i n t e r rupt−parent = <&gic >;

} ;
} ;

Additional Information: You will notice that this node is a modification of the amba pl node
generated by the PetaLinux tools in pl.dtsi. We are modifying the parent node by adding a new
node called counter irq. You can make the name whatever you like; it will be this name that
appears in the processor interrupt list. The three lines work as follows:

(a) compatible: This is a form of ID that allows us to associate the device node with a certain
protocol or family of devices which are all compatible. This must be the same as the
string on the right of the uio pdrv genirq.of id attribute in the boot arguments.

(b) interrupts: This array of values gives the kernel information about the interrupt. The first
value indicates whether it is a SPI, PPI, or SGI device (shared, private, or sofware generated
interrupt). Zero indicates SPI which works in our case (and testing with PPI suggests it isn’t
enabled on our board anyway). The second value is the location of the interrupt pin. In
the Zynq Ultrascale+ Device Technical Reference Manual in the list above, we learn that the
PL PS Group0 ranges from ID 121 to 128. But, in order to properly reference these pins, we
must subtract 32, giving us the value of 89 present in the node (if non-SPI is used—‘1’ in
the first position—subtract 16 instead to produce 105 in the second position). These 8 values
correspond to the 8 possible pins in the PS interrupt port we enabled. The last value indicates
the triggering of the interrupt: 0 = default per kernel, 1 = low-to-high edge, 2 = high-to-low
edge (except for SPI), 4 = high level, 8 = low level (except for SPI). More of this information
can be found in the ARM GIC Interrupt Documentation listed previously.

(c) interrupt-parent: This attribute lets the kernel know which interrupt controller to monitor
the interrupts with. The node for this controller can be found by searching “gic:” in the
zynqmp.dtsi file generated by the PetaLinux tools.

9. Having done this configuration, save the file and build and package the project as described
previously.

10. After booting the image, print the bootargs to the screen to make sure that they have been
updated correctly:

$ cat / proc / cmdline
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This should produce the exact same text we added to the bootargs attribute in the chosen node.

11. Then, print the interrupt listings to the screen:

$ cat / proc / i n t e r r u p t s

This command will list all of the interrupts known to the kernel. The one we added should be
toward the bottom of the GICv2 list as shown in listing 54 in Figure 14. The device node name
used for for the project in the image was dma irq, which should be counter irq for this example.

Figure 14

Notice that various parts of our configuration are visible: the pin number is 121 which is the lowest
in the PS range we used, it is level sensitive (high in our case), and it has the correct name. And,
you can already see that CPU0 has registered an interrupt.

3.7 Reserved CPUs

Reserving CPUs can be helpful because it prevents the kernel from sending tasks there if not needed. It
appears that CPU usage by the kernel can’t be completely avoided (interrupts still occur occasionally on
the reserved CPU), but it can be reduced and the reserved kernel can be dedicated to run a user-defined
task with more consistent performance. This is done with the following two steps:
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1. Add “isolcpus=3” to the bootargs in the same fashion as the uio pdrv genirq.of id attribute
described in this interrupts section. Note: using this argument exactly will reserve the 3rd CPU;
CPUs are zero indexed and to reserve multiple CPUs, separate each one with a comma and no
spaces.

2. After building and booting the image as described previously, run the following command to
see which CPUs have been properly reserved.

$ cat / sys / d e v i c e s / system /cpu/ i s o l a t e d

3.8 Reserved Memory

Reserving memory can be helpful when an AXI DMA engine is writing data to RAM and you don’t
want the kernel to inadvertently claim that same memory for other things. Creating reserved memory
will tell the kernel not to touch it or only to allow it to be accessed under certain circumstances. First,
the below links provide some helpful information used when building the reserved memory device tree
nodes:

1. Reserved Memory kernel device tree bindings documentation

2. Reserved Memory Xilinx Wiki

3. Xilinx forum response about node syntax (see response by Xilinx employee Ibaie)

The following steps explain how the device tree was configured for the board in this tutorial and how to
verify that it is working. This example is for the purpose of making three contiguous blocks of reserved
memory for three separate DMA engines.

1. First, open the system-user.dtsi file in your PetaLinux project (discussed previously) and
add the following node into the root node provided (root node being the “/{}” as done
with the chosen node).

reserved−memory {
#address−c e l l s = <2>;
#s i z e−c e l l s = <2>;
ranges ;

dma mem 0 : dma mem@0x0F000000 {
reg = <0x0 0x0F000000 0x0 0x01000000 >; /∗ 16Mib ∗/

} ;
dma mem 1 : dma mem@0x10000000 {

reg = <0x0 0x10000000 0x0 0x01000000 >; /∗ 16Mib ∗/
} ;
dma mem 2 : dma mem@0x11000000 {

reg = <0x0 0x11000000 0x0 0x08000000 >; /∗ 128Mib ∗/
} ;

} ;

Additional Information: The node “reserved-memory” is known to the kernel and thus must be
spelled correctly. Additionally, it must follow certain syntax. If not, the following error or something
similar can be present in the boot log:

Aug 25 17 : 35 : 20 uzev ke rne l : OF: fd t : Reserved memory : unsupported node
format , i gno r i ng

The “#address-cells” attribute says that the reg attribute in each child node will have 2 address
values, while the “#size-cells” indicates two size attributes in each child node. Notice how each
child node has our desired address, such as 0x0F000000 in dma mem 0 and the associated size of
0x01000000. Before these, there is the additional address value of 0x0 and associated size of 0x0.
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There is little documentation as to why these additional null values are required, but if they are
not present, (and if the address and size cells are set to 1) the previous error will occur and memory
will not be reserved. Based on the forum response in the list at the start of this section, it is likely
something to do with 64 vs 32-bit architectures.

Each of the dma mem X names are lables for the child nodes, followed by the actual name of the
nodes associated with address spaces.

Note that the ranges attribute is required but empty in this case.

2. After configuring the device tree, build the project (using the same considerations and
techniques discussed throughout this tutorial) and package it.

3. After booting the board, run the following command to observe the boot logs:

$ j o u r n a l c t l −b

Make sure that there are not reserved memory errors.

4. Next, run the following to observe that reserved memory has been registered as part of boot.

$ cat / proc /iomem

The output of this command should produce something like the following (first few lines, line
numbers added):

1 00000000−7 f e f f f f f : System RAM
2 00080000−0104 f f f f : Kernel code
3 01050000−0111 f f f f : r e s e rved
4 01120000−01213 f f f : Kernel data
5 07 f f4000 −07 f f b f f f : r e s e rved
6 0 f000000−18 f f f f f f : r e s e rved
7 6bc00000−7 f b f f f f f : r e s e rved
8 7 fe f7000−7 f e f e f f f : r e s e rved
9 7 f e f f 0 0 0 −7 f e f f f f f : r e s e rved

Notice line 6 which contains the full range of our reserved memory from the device tree. The
memory has been reserved and the kernel can access it upon request (with /dev/mem or a driver)
but will not use it for kernel memory.

3.9 Creating Custom PetaLinux Drivers

This topic is much broader than can be covered here, but one simple version is offered to give an idea
of the possibilities. First, here are some helpful links that were used to create the code for this driver
(starting with most helpful):

1. Writing a Simple Linux Kernel Module (this was used as a template for this tutorial’s module)

2. Stack Overflow forum post: How to create a device node from the init module code of a Linux
kernel module?

3. UG1144: PetaLinux Tools Documentation, page 75 (documentation for doing custom modules in
PetaLinux)

4. Stack Overflow forum post (the question shows a helpful code snippet)

5. A simple char device example for linux module (git repo)

6. User space mappable DMA Buffer (git repo)

7. Spidev kernel driver code (and other supported kernel drivers)

8. Xilinx solution for adding modules to a PetaLinux design
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9. Character Device Drivers (Linux Wiki)

Writing device drivers is no simple task. While syntactically they aren’t different from other C programs,
they must be written bug free and interface correctly with the kernel API so as not to hang or break the
kernel. Standard libraries are not available, and the kernel API functions must be used for the kernel to
recognize the device and load it successfully. With all of this in mind, the driver code is provided at the
end of this document in the appendix, but further explanation for how to write it is left to the previous
links. Instead, the following points explain how to use PetaLinux to create a module and compile it, and
then how to load it into the kernel. Some of these steps assume that certain attributes of the provided
code are used in the driver, such as registering the device in the init function and creating a node in
/dev/.

1. In a PetaLinux project that has already been created and set up, run the petalinux-create command
again to set up a module inside of it:

$ peta l inux−c r e a t e −t modules −n rmd −−enable

This command requests that a module be made called “rmd” and that it be enabled during the
build process.

2. After this is complete, go into the project-spec/meta-user/recipes-modules/rmd directory and you
will notice that a Makefile, rmd.c source file, and COPYING file have been created for you. Modify
the rmd.c and add your own driver sources to this directory, and then update the
Makefile accordingly for proper compiling.

3. After the driver has been created, run the petalinux-build command to compile the module.

$ peta l inux−bu i ld −c rmd

This command will compile your “rmd” driver component.

4. After compiling, you will find your compiled rmd.ko file in the build/tmp/sysroots-components/
plnx zynqmp/rmd/lib/modules/4.19.0-xilinx-v2019.2/extra/ directory, or by searching for your
module in the command line from the project root directory:

$ f i n d −name rmd . ko

For simple testing and running, you can copy this file to a directory in a working PetaLinux
filesystem.

5. To load the driver into the kernel, run the insmod command in the directory where your module
is kept (see also this blog for more explanation about loading the module with simpler drivers):

$ insmod rmd . ko

6. After the kernel is loaded, run dmesg to observe the kernel messages. The example driver
provided here, because of the messages reported in the init function, will show something like the
following as it loads:

[ 6 4409 . 520964 ] I n i t i a l i z i n g RMD
[64409 . 523847 ] RMD module loaded with dev i ce major number 253755392
[ 64409 . 529896 ] Device c l a s s c r ea ted
[ 64409 . 533236 ] Device node crea ted

Note that you will also see a message that the module “taints” the kernel, which means that a
module has been loaded which is not built into the kernel and/or which is not supported.

7. Next, verify that a module node has been created by searching in the /dev/ directory
(this will only happen when the correct driver initialization commands are used as shown in the
provided code):

$ l s /dev/rmd
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If the module exists, it will be listed. If not, it was either not registered correctly or at all in the
driver code.

8. If the device is present in /dev/, it can be opened, interacted with, and closed from
program code using the “open” and “close” commands as well as others depending on the con-
figuration of the driver.

Additional Information: The code block shown in Figure 15 was used to test this driver. Note
that it both loads the module by sending a system call, and then opens, reads from, and closes
it. The result of running the test function is to produce to the console the same text held in the
driver message buffer by using the driver’s read function which the kernel associates with the kernel
“read” method. Other functions may be used, such as mmap and ioctl provided that the associated
function is defined and correctly handled in the driver.

Figure 15
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3.10 Applying Patches to a PetaLinux Build

Often, PetaLinux releases have bugs or configuration issues that require code patches. Making a patch
requires manually creating a differential file between the code to be patched and a new, modified version
so that the compiler tools can change existing code without forcing the user to manually change the
kernel source code itself (which, in PetaLinux’ case is pulled from the kernel repo during the build and
often isn’t editable). While the process for making a patch isn’t discussed here, applying a patch in
Petalinux is fairly straightforward as described in the following steps:

1. First, (after going to the project root folder of the project where the patch will be applied, and
setting up the terminal) copy the patch file into the correct source sub-directory in one
of the branches of the project-spec/meta-user/ directory (generally a directory next to a
.bbappends file).

Additional Information: Notice that in this folder contains a few options for you to choose from
depending on the type of patch you are applying:

(a) recipes-apps is for modifying applications

(b) recipes-bsp is for modifying device tree and u-boot files

(c) recipes-kernel is for changes to kernel modules or sources

Bear in mind that these and other directories may or may not exist depending on
what stage of build the project is currently at. For example if you want to apply a kernel
patch as explained here, you will need to configure the kernel via the kernel configuration menu
and then finish building the kernel dependencies. The kernel configuration is opened by running
the config command:

$ peta l inux−c o n f i g −c ke rne l

To complete dependencies and populate the recipes-kernel directory where a patch can be placed,
run the build command:

$ peta l inux−bu i ld −c ke rne l −x f i n i s h

Furthermore, notice that each of the branches of this meta-user directory has a slightly
different hierarchy depending on the modifiable options it contains. Again assuming we are
applying a kernel path as an example, the patch itself should be copied into project-spec/meta-
user/recipes-kernel/linux/linux-xlnx/. The next step explains why.

2. After the patch is copied into the project, we need to modify the associated .bbappends file
so that it will be properly referenced. Open the file and add a line referencing the patch as
shown:

(a) The kernel .bbappends is initialized with the following contents:

FILESEXTRAPATHS prepend := ”${THISDIR}/${PN} : ”
SRC URI += ” f i l e : // devtool−fragment . c f g ”

(b) We want to add one more line:

FILESEXTRAPATHS prepend := ”${THISDIR}/${PN} : ”
SRC URI += ” f i l e : // devtool−fragment . c f g ”
SRC URI += ” f i l e : // l inux−fragment−f i x . patch ”

Additional Information: Using the same kernel patch example, the file should be called something
like “linux-xlnx %.bbappend” and be located, as stated before, one directory up from the patch.
These SRC URI lines by default reference the neighboring directory in which are located the
patches. If the patch is somewhere else, it can be referenced using the path to it instead of
“file://”, but will be different from what is shown here.

3. After adding the patch to the proper place, and adding the reference to the .bbappends file, build
the project as usual for the patch to be applied. Note that if you clean the project after
copying the patch in and changing the .bbappends, the clean process might remove your additions
so be sure to check that they are there before running the build command.
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4 Working With Other FPGA Boards

Because FPGA specifications differ from family to family, and because development board manufacturers
can choose how they want to implement a given FPGA chip, building a PetaLinux image on a board
other than the UltraZed will naturally involve some differences from the steps described in this tutorial.
This is evident in this tutorial by the fact that we had to change the memory block device in order to
boot from the SD card because Avnet elected to organize their memory drivers in the way that they did.

Similarly, considering designs like those that use the MicroBlaze processor, the degree of configurability
may be quite a bit different from this tutorial because the processor architecture is different, the size
is smaller, and general use-case is unique from the ARM processors on Zynq-7000 and ZynqMP chips.
The kernel config window for a MicroBlaze PetaLinux project is shown in Figure 16 to show its contrast
from Figure 8.

Figure 16

If you would like more information about using MicroBlaze with PetaLinux, one tutorial for PetaLinux
on a MicroBlaze can be found here.

Even among boards with the same template (such as the UltraZed and Ultra96, for example, which both
fall under “zynqMP”), there can be challenging differences because different boards handle hardware
differently. While it is impossible to list everything that may be different between boards and templates
here, we at least find it a valuable disclaimer to say that this tutorial will differ from others, and that it
is likely that setting up PetaLinux on another board will require some adjustment. One such example
using the ZCU111 board is described here, including some additional configurations that are necessary.
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4.1 PetaLinux on the ZCU111

This section is taken—some text and images exactly and others summarized—from the wiki page written
by Mitch Burnett found here under the section “Custom hardware design.” They describe additional
configuration steps for a proper build (to get additional peripheral hardware recognized) as well as how
to add example designs into the build as well as additional utilities.

1. Using the same PetaLinux tools and setup described previously, run the following commands:

$ peta l inux−c r e a t e −t p r o j e c t −−template zynqMP −n r f d c l i n u x
$ cd r f d c l i n u x
$ peta l inux−c o n f i g −−get−hw−d e s c r i p t i o n=<path to HDF/XSA>

(a) In “DTG Settings” change the MACHINE NAME to zcu111-reva

(b) In “Image Packaging Configuration” change “Root filesystem type” to “SD card”

(c) In “Yocto Settings” change YOCTO MACHINE NAME to zcu111-zynqmp

(d) Save and exit the configuration window

Additional information: By setting the DTG settings to zcu111-reva this indicates to PetaLinux
that there is a default board device tree configuration to load. The most recent PetaLinux UG
typically has a current list of all available values. This configuration also changes the default rootfs
packaging type from INITRAMFS to SD card. Instead of a RAM disk we are now able to boot
from an SD card and any changes will be persistent as they are saved to disk instead of volitale
and stored in RAM.

2. In addition to default board configurations this can help indicate to PetaLinux a repository of
optional example designs to include in our custom desing. For the RFDC Xilinx has provided some
examples that can be compiled in.

To include these examples in the build open rfdc linux/project-spec/meta-user/recipes-
core/images/petalinux-image-full.bbappend and add the following lines:

IMAGE INSTALL append = ” r f d c ”
IMAGE INSTALL append = ” rfdc−read−wr i t e ”
IMAGE INSTALL append = ” rfdc−s e l f t e s t ”

3. Next, if the example designs are included, we need to provide a custom bitbake file to compile them
with the following steps

(a) Make a directory for the bitbake file:

$ mkdir −p pro j e c t−spec /meta−user / r e c i p e s−bsp

(b) Create the file rfdc-selftest %.bbappend and add this content to the file (everything
after “make all” is part of the make command and should be on the same line):

do compi le ( ){
make a l l BOARD FLAG=−DXPS BOARD ZCU111 OUTS=rfdc−s e l f t e s t
RFDC OBJS=x r f d c s e l f t e s t e x a m p l e . o

}

4. Next, having configured the hardware, we need to add software libraries. For the ZCU111 the
RFDC uses i2c to communicate with the onboard LMK/LMX clocking network that provides on
board reference clocks to the data converter. We therefore need to enable the i2c communication
driver libraries. Run the following config command to open the rootfs configuration window:

$ peta l inux−c o n f i g −c r o o t f s
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(a) In “base” include the i2c-tools as “built-in” so that you see the following:

[ ∗ ] i2c−t o o l s

(b) If the rfdc-examples were included as described above then the following user packages (in the
“user packages” option from the base menu) will be made available in the rootfs configuration,
which you should update as follows:

[ ∗ ] r f d c
[ ∗ ] r fdc−read−wr i t e
[ ∗ ] r fdc−s e l f t e s t

5. At this point our PetaLinux image is in a minimum viable state that would allow us to finish
building the project and deploying the image. However, our Linux image is so vanilla it is almost
unusable. So, we also have the option to use the roofts config menu to go shopping and peruse
through a list of common utilities and libraries that can be added to our project manually. While
still in the rootfs menu, take a look around and see what additional utilities you may like
to add and, when finished, save and exit the configuration window.

Additional information: Using the zynqMP template, Yocto build machine and zcu111-reva DTG
has given us this barebones setup. But it leaves out many of the standard development libraries
and utilities that most of take for granted when working in a Linux development environment. By
default there is no sudo, wget, bash, git, make, ...insert-a-common-utility-here. Without manually
adding in utilities, many of these standard commands are delivered as a single compiled utility
called busybox. So while some of these commands are present they are just accessed in a different
way than may be accustomed (man busybox for a better explanation and how to use it).

6. Now, we can finish building the packaging the image using the usual commands if the
default locations are used or with the additional specifiers shown pointing to the correct location
or desired output for each included piece:

$ peta l inux−bu i ld
$ peta l inux−package −−boot −− f s b l −−u−boot −−pmufw −−fpga

or
$ peta l inux−package −−boot −−format BIN
−− f s b l images / l i nux / zynqmp fsbl . e l f −−u−boot images / l i nux /u−boot . e l f
−−pmufw images / l i nux /pmufw . e l f −−fpga images / l i nux /∗ . b i t −−f o r c e

Again, note that the second packager command option is all on one line. All of these steps should
build a working image.

7. Having build the images, the next step is code development. An introduction to setting up the
Xilinx SDK is shown here. Notice that there are some differences between these steps and those
described previously in this tutorial.

(a) First, we will build the SDK platform using the PetaLinux tools by using the following
commands:

$ peta l inux−bu i ld −−sdk
$ peta l inux−package −−sy s r oo t

Note that the build command will take a while again to complete, just as it does for the image
build.

(b) Next, launch the SDK as usual. Note that if you are using PetaLinux 2019.2 or later, you
will have to navigate the Vitis tools, which are different from the traditional SDK and take
more setup before an application project can be created. In the following steps we will show
how to set up an application project, which for Vitis assumes that the project platform has
already been set up.
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(c) When the SDK opens start a new application project and configure it as shown in
Figure 17.

Figure 17

Notice in this configuration that in addition to the normal options used in other parts of
this tutorial, it is also important to check the option “Linux System Root” and add the
right directory, which is at /images/linux/sdk/sysroots/aarch64-xilinx-linux in the PetaLinux
project. This will add additional libraries into the application based on the way that the
image was configured.

(d) Finish the configuration by selecting the option for an empty Linux application
and clicking finish.

(e) After the project is set up, right click on the root project folder in the left window
pane and click “C/C++ Build Settings” toward the bottom of the dropdown menu.

(f) Point the linker to the system root that was created by the PetaLinux tools as
shown in Figure 18. Notice that our addition is in the “Linker Flags” text box, which says
−−sysroot=“<path to plnx proj>/images/linux/sdk/sysroots/aarch64-xilinx-linux”. <path
to plnx proj> should be substituted for wherever your project root directory is located.
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Figure 18

(g) Next, add in the appropriate linker libraries as shown in Figure 19, which are “metal,”
“rfdc,” and “m;” and the appropriate search paths which are “<path to plnx project>
/images/linux/sdk/sysroots/aarch64-xilinx-linux/usr” and “[...]/lib”.

Figure 19

(h) Last, all of the RFDC driver code require that a pre-processor macro identifying that the
ZCU111 is the target board in order to compile. You can either add the #define XPS BOARD ZCU111
macro to your code or you can use the build settings Symbols configuration as
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shown in Figure 20 to pass XPS as a -D flag as part of the Makefile that XSDK generates
behind the scene.

Figure 20

(i) At this point the setup is complete and you are ready to begin building applications for the
RFDC.

5 Using a Custom Carrier Card

The carrier card used for this tutorial was not the Avnet carrier card, though the layout for it was created
by mimicking Avnet’s version minus the majority of their additional peripherals. In our design we only
really needed the Ethernet port, micro USB, and SD reader, as well as a couple of our own peripherals,
so in the long term we needed to migrate away from Avnet’s card anyway.

Though intuitive in some ways, it is worth saying that our custom carrier card was designed to mimic
the Avnet card because doing so allows us to use the default configurations set up by Vivado, PetaLinux,
and Avnet’s UltraZed-7EV SOM board. If the Ethernet port, for example, were to be connected to
different IO, that may also require changes in the configuration of the Vivado project (particularly if the
Ethernet controller is in the PL), as well as the PetaLinux image. This alternative route is out of the
scope of this tutorial, but we venture to point out that using the defaults where possible will reduce the
amount of additional work required to set up a project, if a custom carrier card is to be used.

Furthermore, we note that when starting a Vivado project and selecting the default part to use, it can
be confusing which option of the three to choose—the FPGA part alone, the UltraZed-7EV SOM or the
UltraZed-7EV Carrier Card. In our projects, we have found that there is some crossover regarding which
option works in which scenario, which is to say that the UltraZed-7EV SOM option will likely work for
projects on the carrier card, the UltraZed-7EV Carrier Card option will likely work even if not on a
carrier card, the FPGA part will likely work as well on and off the carrier card, etc. While it is hard
to know all of what Vivado configures when a certain option is chosen, it is assumed that selecting the
carrier card option will import the additional peripheral drivers that are present for use on the board
such that the user can more easily interface with them. As long as these features are not needed, it
shouldn’t matter which option is chosen. For our configurations and using our custom carrier card, we
have found it safe to use the UltraZed-7EV SOM option without issue (as of yet).
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Appendix

Figure 21
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Figure 22
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